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Introduction 
 
The essential basis of all ePX1 technology is implementation of a true supercomputer 
processing model based upon multi-CPU/Graphics Processor Unit Array (GPA) 
architectural templates {18}{19}. In this configuration, the ePX Desktop Super-
Computer (ePX/DSC) functions as a stand-alone PC-based scientific workstation for 
which processing performance is dominated by GPA order and the number of active 
thread-processors-per-GPU, (re: discussion of Amdahl’s Law in “ePX Supercomputing 
Technology” whitepaper {19}). Key advantages associated with ePX include; (1) parallel 
Single Instruction Multiple Data (SIMD) thread-processing employed by GPU’s 
facilitates broad-spectrum acceleration of algorithmic kernels commonly used in 
scientific computation, and (2) CPU/GPA process-pipelining (overlap) facilitates 
acceleration of complete applications well beyond capability associated with the standard 
CPU/GPU coprocessor model {19}. Theoretical analysis informed by comprehensive 
empirical testing suggests performance of a single ePX/DSC workstation will compare 
very favorably with small workstation clusters19 based on standard PC/CPU 
configurations. In simplest terms, this result is rooted in three considerations; (1) O(101) 
– O(103) processing speed-up based upon an ‘NGPU × NTP/ GPU’ acceleration factor, 
(‘NGPU’ ≡ Number GPU’s per GPA, ‘NTP/ GPU’ ≡ Number Thread-Processors per GPU), 
(2) essentially collision-free CPU/GPA interprocess communications based upon use of 
high-speed local interconnect, (e.g. ‘PCIe’, ‘HyperTransport’), and (3) CPU/GPA 
concurrency based upon non-blocking/asynchronous (‘streaming’) API transaction 
model. 
 
It is interesting to note ePX advantages may be scaled to higher performance levels in 
essentially two ways; (1) custom hardware solutions based upon ever higher GPA order, 
and (2) cluster-processing, (i.e. adoption of a cluster-computing architecture). Each 
approach offers advantage of higher theoretical processing bandwidth. However, where 
physical space is not a significant issue, node clustering based upon standard PC form-
factor remains a preferred approach to ePX performance scaling. This claim is motivated 
by; (1) relative ease with which a cluster may be implemented, (i.e. based upon 
availability of standardized API resources and COTS hardware components), and (2) 
realization of superior cost/performance ratio and scaling properties where the cluster 
approach is combined with the ePX supercomputer processing model. In particular, the 
custom hardware approach can engender significant difficulty and complexity; (1) 
significant incremental NRE cost, (2) challenging heat-transfer/cooling problems, (3) 
specialized API development effort, (4) local-interconnect total bandwidth constraint, and 
(5) local-interconnect form-factor constraint, (e.g. number of PCIe or HyperTransport 
slots). In what follows, we review key technical aspects of ePX Cluster1 technology. 
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Cluster Architecture 
 
The ePX Cluster architectural template is based upon more or less standard computer 
network communications infrastructure with ePX/DSC workstations18 placed at each 
processing node, (i.e. see ePX/DSC architectural template description in references 
{18}{19}). Two network communications standards are currently supported; (1) Ethernet 
{28}, and (2) InfiniBand {27}. ‘InfiniBand’ is based upon network switch PHYsical 
layer (PHY) with channel bonding features, while ‘Ethernet’ employs a far simpler 
CSMA/CD PHY. Of the two, InfiniBand exhibits far superior network scaling properties, 
(i.e. as one adds processing nodes). However, Ethernet is also far less expensive and 
available in form of commodity hardware components. Further, Ethernet has proven 
sufficient for a wide range of cluster processing applications. In what follows, Ethernet is 
assumed as the nominal ePX Cluster communications infrastructure, with understanding 
‘Ethernet’ may be replaced with ‘InfiniBand’ for large-scale ePX Cluster solutions. 
 
The fundamental concept for ePX supercomputer processing model implementation on 
clusters is parallel execution of component tasks distributed to multiple cluster-nodes, 
(i.e. see processing model discussion below). In figure-1, the nominal ePX Cluster 
architectural template is displayed schematically in block diagram form; component-tasks 
are distributed over an Ethernet-based network part and parcel of ePX scatter-gather. 
Cluster ‘NODE0’ is further expanded in form of the ePX CPU/GPA architectural 
template. In this case, the network is hierarchically ‘flat’. However, the principle remains 
fully extensible to multi-cluster ‘grid’ networks, (i.e. exhibiting some form of network 
hierarchy). The ePX supercomputer model requires application level access to network 
communications infrastructure, (re: network socket-based interprocess communications), 
and a variety of standard TCP/IP-based {31} message-passing Applications 
Programming Interface (API) libraries may be employed for this purpose, (e.g. ‘MPI’ 
{15}{16}, ‘OpenMPI’ (Linux) {12}, and ‘MPICH’ (Windows) {17}). 

 

 
 

Figure-1: ePX Cluster Architectural Template 



Processing Model 
  
Workstations based upon CPU/GPU-coprocessor architectural templates have already 
been clusterized for extended performance scaling {2}{9}. However, ePX Cluster 
extends this idea so as to realize all advantages derived from implementation of the ePX 
supercomputer processing model at all cluster-nodes, (i.e. ePX/DSC at each processing 
node). In particular, aside from the raw acceleration potential inherent a GPU array, it 
will be shown ePX Cluster employs a highly flexible task-kernel-thread process 
hierarchy by which; (1) spatio-temporal data coherence properties may be exploited 
cluster-wide, and (2) I/O constraint boundaries are more easily placed at associated 
processing performance constraints for realization of highest performance potential. 
 
ePX Cluster scaling is achieved by virtue of an enhanced parallelism applied to dataflow2 
structures larger than what might be parallelizable on a single ePX processing node. In 
effect, the ePX supercomputer processing model is extended to a task-kernel-thread 
application decomposition, with task processing distributed to cluster-nodes part and 
parcel of GPA scatter-gather operations already applied to kernel and thread 
components. A critical subtlety emerges in that total ePX node processing bandwidth 
admits mapping of generally larger task-components when compared with standard PC 
nodes at a constant inter-node communications envelope, or an equivalent total 
processing time. Assuming perfect load-balancing and I/O constraint boundaries placed 
at the associated multi-CPU/GPA processing performance constraint boundaries, (i.e. no 
processing element stalls for lack of datapath; see Amdahl’s Law discussion below), 
highest performance potential is realized at a total cluster acceleration (‘ATOTAL’; ‘NNODE’ 
≡ Number cluster processing nodes) given by: 
 
    NODENODETOTAL ANA ⋅=    (1) 
 
At perfect multi-CPU/GPA pipelining, (re: Amdahl’s law discussion in {19}), over all 
cluster nodes, theoretical maximum ePX Cluster performance potential is given by, 
(‘NGPU’ ≡ Number of GPU instances in array, ‘NTP/GPU’ ≡ Number of thread processors 
per GPU): 
 
 GPANODEGPUTPGPUNODENODENODETOTAL NNNNNANA ⋅=⋅⋅≅⋅= /  (2) 
 
Thus, we observe a triple-axis scaling relation unique to ePX Cluster - linear scaling in 
the number of cluster processing nodes, number of GPU’s employed at a (cluster) 
processing node, and number of parallel thread processors per GPU. One might surmise 
scaling may be performed more or less equivalently along any axis and to some extent 
this is true. However, this analysis engenders implicit assumption of collision-free inter-
node communications characteristic of parallel and tightly coupled cluster processing. 
Thus, at any collision-free constraint boundary, cluster node I/O bandwidth must 
proportionally decrease as one increases ‘NNode’. This requirement may be satisfied with 
processing of sufficiently large component tasks at each node, at constant-acceleration3. 
Assumption of a constant-acceleration constraint in turn implies concomitant scaling in 
‘NGPA’. Thus, the aforementioned triple-axis scaling relation is understood as 



fundamentally vectorial. In particular, cluster performance scaling hinges upon the fact 
ePX optimized CPU/GPA performance facilitates reduced internode communication 
bandwidth. 
 
An example application dataflow15 with superimposed component task partition is 
displayed in figure-2. Noting communications internal to any given component task are 
local to a single cluster-node, (i.e. don’t appear in the internode communications budget), 
it can be shown internode bandwidth requirements may be controlled at associated 
internode I/O boundaries with adoption of simple conditions on equivalent subgraph 
structure3,4. Qualitatively, the number of algorithmic kernels comprising a given 
component-task, (i.e. ‘size’), determines internode bandwidth overhead and the number 
of CPU/GPA resources available to a given component-task determines performance at a 
given node. This essential relationship is then leveraged as basis for optimizing cluster 
performance at the internode communications constraint boundary, (re: equation-2). 
 

 

 
 

Figure-2: Example DataFlow Component-Task Elaboration 
 
ePX Cluster extends the supercomputer processing model described in “GPU-based 
Desktop Supercomputing” {18} and “ePX Supercomputing Technology” {19} to scatter-
gather distribution of processing threads across the cluster infrastructure. In effect, a 
hierarchical schema is employed whereby application component-tasks are distributed to 



processing nodes, algorithmic kernels are distributed to GPUs, and threads are processed 
at each GPU according to a parallel SIMD (vector) model. Thus, hierarchical software 
decomposition and parallel-processing at each level of hierarchy is implied throughout. 
 
The ePX supercomputing model is distinguished by optimal scheduling against GPA 
processing resources. In particular, algorithmic kernels are dynamically mapped to GPU 
instances (scheduled) based upon; (1) GPU-element availability and (2) opportunistic 
SIMD instruction pipeline reuse. In this manner SIMD Cyclostatic Thread Residency 
(‘CTR’; see discussion in ref. {19}) is effectively maximized at any GPU instance, 
affording highest possible acceleration efficiency cluster-wide. In present context, ‘CTR’ 
is defined as a measure on the expected proportion of time during which the instruction 
pipeline is performing actual datapath calculations, (e.g. as opposed to device I/O, 
instruction pipeline initialization, and thread synchronization). Associated scatter-gather 
distribution of work-units consisting of processing threads and any associated datapath to 
GPA resources is performed according to scheduler state. A given thread-set may be 
applied to a GPU instance at initialization or may already exist in situ as result of a 
previous processing cycle. In the latter case, the scheduler will opportunistically forego 
pipeline re-WRITE/initialization, (re: instruction pipeline reuse), and apply only datapath 
during a given scatter cycle. In this manner, algorithmic kernels are parallelized at the 
GPA transaction buffer and thread-sets optimally processed in parallel within GPU/SIMD 
instruction pipelines. This bipartite parallelism critically depends upon the fact scatter at 
the GPA transaction buffer is non-blocking. Thus, the CPU does not have to wait for 
completion of a GPU processing cycle. In this manner, CPU/GPA thread processing may 
be effectively overlapped. Note gather remains blocking according to the associated 
dataflow representation and implied scheduler synchronization semantics. ePX 
Framework further implements all required scheduler, scatter-gather, and CPU/GPA 
pipelining management functionality based upon an abstraction by which work-unit 
structure and interprocess communications implementation details are effectively hidden. 
In effect, all such details are pushed to process-queue service routines. Thus, ePX 
management operations remain generic across all multicore-CPU/GPA and derivative 
cluster architectural templates regardless of the specific nature and location of process 
components. 
 
At any ePX node, distinct scatter-gather process queues are maintained for each mapped 
processing resource. Service routines attached to these queues are responsible for work-
unit WRITE/READ transactions at associated buffers. ePX Cluster employs three such 
buffer classes and associated methods corresponding to GPA, CPU, and NODE (cluster) 
resources. Multi-CPU/GPA transaction sequences are already described in “ePX 
Supercomputing Technology” {19}. NODE transactions are mitigated by an associated 
interprocess-communications API. Depending upon application requirements, Operating 
System (OS), and architectural template, a variety of (interprocess communications) 
API’s are supported; (1) MPI {13}{15}{16}{17}, (2) OpenMPI {12}, and (3) OpenMP 
{14}, (i.e. see ‘ePX Middleware’ discussion below). The aforementioned scatter-gather 
service routines then implement API-specific calls for transparent access to a given 
processing resource. In standard configuration, ePX Cluster employs three distinct APIs 



for this purpose; (1) CUDA (GPA) {4}, (2) OpenMP (multi-core CPU), and (3) MPI 
(cluster-node). 
 
Nominal ePX Cluster scatter-gather pathways are displayed in figure-3. Component 
tasks are placed at cluster nodes as daemons, or spawned via ‘FORK-EXE’ and 
propagated over the cluster network, (i.e. see ePX Middleware discussion below; 
‘MOSIX’ references {23}{24}{25}). In this specific case, component-tasks originate at 
ePX/DSC-NODEN and are propagated to all other nodes. At NODE0, distribution of 
algorithmic kernels to GPA elements, (i.e. scatter-gather), and associated subtasks to 
multicore CPU, (i.e. multithreaded), are also displayed. 

 

 
 

Figure-3: ePX Cluster Scatter-Gather Pathways 
 

 
Within context of any application, all ePX Cluster nodes remain fully capable of 
performing scatter-gather on any unused cluster resource. Thus, dataflow-object parsing, 
schedule generation, work-unit composition and scatter-gather are all distributed 
according to the task-kernel-thread hierarchy. In this manner, all cluster resources may be 
brought to bear in highly flexible manner, with maximal parallelization10 and minimal 
impact upon internode communications resources11. Application execution is initiated at 
a single control node with discovery and registration of all available cluster nodes 
followed by schedule generation. Application processing proceeds with work-unit 
distribution to peripheral cluster resources per the schedule part and parcel of the 
assumed supercomputer processing model; associated datapath may be propagated as an 
explicit work-unit component or virtualized based upon data-server transactions at the 
originating cluster-node, (i.e. part and parcel of dataflow elaboration). Upon receipt of a 
work-unit at a peripheral cluster-node, the resident ePX-manager initiates discovery and 
registration of available cluster resources, followed by generation of a local schedule, 
followed by scatter-gather more or less identical to that performed on the originating 
node. A key subtlety is the descriptive term ‘component-task’ is understood as referring 



to processing of a specific dataflow-object and application components (software) 
present at any associated cluster-node exist as copies of the code running on the 
originating cluster-node. This has significant ramification for both ePX software design 
and FORK-EXE-based (component) task distribution {23}{24}{25}. 
 
Scheduler 
 
ePX-scheduler establishes a basic organizational schema for all scatter-gather operations 
on cluster processing resources according to process dataflow. Where ePX Cluster is 
considered, an initiating node performs dataflow elaboration, followed by schedule 
generation, followed by work-unit assembly and distribution (scatter-gather) onto the 
cluster. Cluster schedule optimization is based upon minimization of total processing 
time subject to maximum memory bandwidth and interprocess bandwidth constraints. An 
immediate consequence of this constrained optimization is minimal-processing-time is 
generally not equivalent to maximal-parallelization. At the performance boundary, a 
trade-off is established between speed-up due to parallelization and degradation due to 
associated communications overhead, (re: contention-free access to processing 
resources). This trade-off is managed by synchronized propagation of control, 
instructions, and datapath over communications infrastructure based upon a tightly-
coupled process schedule. Where ePX Cluster is considered this essential trade-off is 
rooted in the effectively ‘flat’ nature of cluster-node communications infrastructure. 
 
An example ePX Cluster-node component-task dataflow is displayed in figure-4. This 
dataflow is understood as being generated part and parcel of dynamic process-scheduling. 
In present context, ‘dynamic scheduling’ is seen to imply presence of (process) 
conditionals at an originating cluster-node by which dataflow objects are generated, 
parsed, and distributed to cluster-node resources. Conditionals associated with task/kernel 
synchronization, CPU process pipelining, and instruction pipeline reuse, (re: are updated 
at each processing cycle according to dataflow elaboration. Once generated, dataflow 
processing is effectively identical at all cluster-nodes. In figure-4, component-tasks are 
color-coded based upon mapping to local resources, (i.e. ‘yellow’) or distributed via 
scatter-gather to another cluster-node, (i.e. ‘blue’). 
 
While any of a multitude of approaches of varying complexity may be employed for 
scheduler design, ePX-scheduler is currently based upon a particularly simple ‘greedy’ 
heuristic affording robust and near-optimal performance; “Everything that can be 
scheduled is scheduled”. The scheduler algorithm is also considered distributed-recursive 
in the sense that; (1) any dataflow-object scattered onto the cluster will necessarily lead to 
scheduler invocation under aegis of an ePX-manager copy, albeit on a distinct processing 
node (distributed), and (2) the original dataflow is hierarchically disassembled and 
processed piecemeal, (i.e. ‘divide and conquer’), by a flow-dependent sequence of 
scheduler invocations (recursive); in this instance full recursion semantics7 accrue based 
upon the ‘call-back’ property implicit to scatter-gather. 
 



 
 

Figure-4: ePX Cluster-node Component-Task DataFlow Example 
 
Cluster internode communications are typically based upon InfiniBand5 {27} or Ethernet6 
{28} PHY; InfiniBand represents a favored cluster/supercomputer interconnect 
technology due to availability of a scalable-bandwidth PHY, while Ethernet remains far 
more ubiquitous and relatively low-cost. However, in present context, relative advantages 
and disadvantages are obviated in face of the fact each engenders some contention-free 
bandwidth constraint capable of significantly impacting cluster performance. An essential 
point is collision/contention resolution remains a fundamentally statistical process with 
ancillary overhead; internode communication must then be considered ‘lossy’ with result 
expected (internode) communication rates remain less than maximal. Thus, statistical 
limits are placed upon the degree to which component task processes may be tightly 
coupled. This effect is displayed in figure-5 where component-task time intervals are 
padded with expected statistical wait (‘OVerhead’) intervals. As shown by the expanded 
CPU/GPA task schedule for CT0, all kernel and thread execution intervals associated with 
that task are then similarly padded. In this manner, performance at all levels of processing 
hierarchy is effectively reduced. Further, at fixed equivalent internode bandwidth, these 
effects tend to increase as cluster nodes are added, (re: cluster scaling properties), with 
result intertask coupling and overall processing efficiency is further degraded. In this 
manner, the aforementioned task-parallelization/communications-overhead performance 
optimization trade-off emerges as a cluster scaling property. 
 



 
 

Figure-5: ePX Cluster Task-Schedule Example 
 
Scatter-Gather 
 
The distributed-recursive nature of ePX-scheduler then implies associated scatter-gather 
operations will also exhibit a distributed-recursive pattern. In effect, any ePX-manager 
instance parses an input dataflow-object, schedules processing of task-components on 
some combination of (local) multi-CPU/GPA and cluster-node resources, and then 
scatters all process components. Kernels are processed locally to the limit of available 
GPA resources and the remainder composed as task-components and scattered to 
available cluster-node resources. This process is then repeated at any receiving cluster-
node part and parcel of distributed-recursive scatter-gather. In this manner, all cluster 
resources may be brought to bear based upon the assumed task-kernel-thread hierarchy 
and ePX supercomputer processing model. A critical advantage is realized whereby 
mapping of software components to processing resources is rendered highly flexible. This 
flexibility is expressed in form of specific parametric dependencies commonly associated 
with a full-featured supercomputer processing model, (e.g. parallelization 
hierarchy/order, work-unit composition/order, and process pipeline depth). A further 
advantage is gained in that internode communications are greatly reduced relative to an 
approach whereby all scatter-gather is performed at a central control-node, (i.e. initiating 
node). 
 
The ePX supercomputer processing model critically depends upon non-blocking ‘scatter’ 
at all transaction buffers, as implemented by the GPU, multi-CPU, and cluster-node 
API’s. This feature enables overlap of GPU processing at all array elements and 
pipelining of cluster-node and multi-CPU/GPA processes. The result is an effective 
concurrent process schedule by which true supercomputer performance may be realized. 
On the other hand, ‘gather’ operations throughout the dataflow remain blocking, as 



defined by (local) scheduler synchronization semantics. Scheduler synchronization is 
defined according to dataflow topological, (i.e. ‘graph theoretic’), structure by which 
specified inputs must be concurrently present in order for processing to proceed along 
some dataflow branch. Where ePX Cluster is considered, synchronization events are 
resolved at distributed ePX-manager instances. 
 
‘Scatter-Gather’ work-unit assembly is based upon a dynamic dataflow design 
representation combined with an algorithmic kernel decomposition created part and 
parcel of ePX applications software development methodology. In particular, ePX 
software design is fundamentally expressed as a global dataflow-object with tasks 
mapped to cluster nodes, algorithmic kernels mapped to GPU instances, and threads 
mapped to GPU thread processors. Concurrent kernels nominally express data-
parallelism8 constrained by available GPU device memory and processing resources and 
optimally sized based upon; (1) SIMD cyclostatic residency, (2) GPA load-balancing, 
and (3) SIMD instruction pipeline reuse. Concurrent tasks nominally express both task-
parallelism8 and data-parallelism; with expectation data-parallel elements will ultimately 
be extracted and mapped to local multi-CPU/GPA resources. 
 
Multicore CPU/GPA Pipeline 
 
Where the multi-CPU/GPA architectural template is being considered, control is returned 
to the CPU after any non-blocking scatter operation, (i.e. see CPU/GPA Pipeline 
discussion in {19}). While function calls at the CPU are nominally processed 
sequentially according to some variant on the Von Neumann model, use of multicore 
CPU admits multi-threaded processing of kernels mapped to the CPU process-queue. 
While scatter-gather is not employed, multithreading is parallelized based upon an 
assumed Symmetric Multi-Processing (SMP) model, with full Operating System (OS) 
and runtime-system support implied. In effect, the pipelined CPU code components in 
CPU/GPA {18}{19} may be regarded as replaced by a third axis of parallel-processing in 
multi-CPU/GPA. In this context, CPU code parallelization is by definition ‘local’ - total 
parallelization may be increased with little or no increased internode communication. Of 
course, at any given node-instance, some non-parallelizable code fraction necessarily 
remains12. However, the generally shorter CPU-process timelines associated with 
multicore facilitates improved local CPU/GPA pipelining and generally improved global 
performance. In present context, multicore CPU parallel-processing model 
implementation is greatly facilitated by; (1) ePX use of generalized process queues, and 
(2) availability of standardized (multicore) API libraries, (e.g. ‘OpenMP’ {14}, 
‘OpenCL’ {33}, and ‘CUDA’ {29}), as basis for associated process-queue service 
routines. From a global cluster-processing perspective, Amdahl’s Law still holds, albeit 
in a slightly different way, (i.e. see Amdahl’s Law discussion below). 
 
Kernel Dependencies and Composition 
 
Optimal kernel processing part and parcel of the ePX-Cluster processing generally results 
under conditions where mapped kernels remain fully encapsulated, and data-parallel8. In 
this context, an encapsulated kernel is self-contained; all required data and instructions 



are available at SIMD pipeline initialization. Thus, once the instruction pipeline is 
initialized, no ancillary interprocessor communication, (i.e. ‘message-passing’), or thread 
resynchronization is required for completion of a processing cycle. Additionally, data-
parallel kernels are typified by a single I/O process and single SIMD pipeline 
initialization during any processing cycle. Conversely, a task-parallel8 kernel is actually a 
‘composition’ of multiple data-parallel kernels, each of which requires a distinct I/O 
process and SIMD pipeline initialization during any processing cycle. 
 
Generally speaking, any use of non-encapsulated kernels in an application dataflow 
necessarily implies additional CPU processing and resynchronization across CPU/GPU 
process instances; any increased CPU processing gives rise to increased CPU/GPA 
pipeline overhead and GPU resynchronization reduces equivalent SIMD processing 
efficiency. However, there exist important circumstances requiring use of non-
encapsulated kernels; (1) dynamic scatter-gather control, and (2) passing intermediate 
results between GPA elements. In the former, global state is updated based upon kernel 
processing output and the process dataflow modified according to conditionals in turn 
based upon global state. Once activated, any dataflow-object thus generated is scattered 
as described above13, (re: ‘processing model’ discussion). In the latter case, a given 
kernel too large for execution on a single GPU is split into multiple fractional-kernels, 
effectively requiring use of a Symmetric Multi-Processor (SMP), (i.e. shared-memory), 
processing model {30}. This scenario may be further complicated by distribution of 
fractional kernels across multiple cluster nodes. Difficulties emerge in that the cluster 
architectural template is characteristic of a distributed memory system; while the 
message-passing interface already present at each cluster-node can be leveraged for 
creation of a virtual shared-memory image, considerable performance overhead may 
accrue based upon ‘MUTEX’ conditions required for guaranteed memory consistency. 
Nevertheless, while appearance of any overhead is undesirable it is also important to note 
use of non-encapsulated kernels provides additional resource mapping options. In fact, 
some applications will require this feature in order to satisfy hardware resource 
constraints or otherwise optimize the process schedule. 
 
Load-Balancing across all mapped cluster-resources generally facilitates mutual 
synchronization of component processes as basis for overall performance optimization. 
As point of fact, process kernels generated part and parcel of dataflow elaboration will 
accrue in a variety of ‘sizes’. Thus, an important optimization technique emerges in form 
of optional kernel composition, (re: ‘task-parallelism’), at a GPU process-buffer; a 
number of small kernels may be composed in form of a single work-unit, (i.e. equivalent 
to a ‘task-parallel’ kernel), and applied to the GPA in a single scatter operation. 
However, each associated instruction pipeline initialization14 and I/O process still serve to 
reduce SIMD processing efficiency. In this manner, another essential performance 
optimization trade-off is revealed in form of GPU ‘load-balance versus efficiency’. 
 
An essential point is, despite incurred overhead, both non-encapsulation and task-
parallelism remain useful as design options. Further, any valid process schedule 
optimization must necessarily include overhead associated with kernel dependencies and 
work-unit composition. 



ePX Middleware 
 
The middleware software component provides access to processing resources via a 
standardized set of Application Programming Interfaces (API), based on a generic 
software framework development model. These API components correspond to; (1) 
cluster-node, (2) multicore CPU, and (3) GPA processing resources accessed by service 
routines attached to ePX process queues. Each API provides a hardware-abstracted 
transaction model in support of non-blocking scatter-gather plus ancillary interprocess 
communication, (i.e. including local GPU-GPU transactions). In this manner, ePX 
Cluster is understood to employ a hybrid parallel-processing model by which 
concurrency at cluster, multicore, and GPA levels of architectural hierarchy is achieved. 
 
cluster-node API is used to distribute and manage component tasks across cluster 
infrastructure consisting of some set of processing nodes and an accompanying internode 
network communications resource. In particular, this API is leveraged to overlap network 
communication with CPU/GPA processing based upon a global communications 
schedule. Where ePX Cluster is considered, cluster-node API is nominally based upon 
the Message Passing Interface standard {15}{16} and may occur in one of two specific 
forms; (1) ‘OpenMPI’ (Linux) {12}, and (2) ‘MPICH’ (Windows) {17}. The basic MPI 
version 1.3 implements a distributed memory model with; (1) TCP/IP-based interprocess 
communications, (2) flexible synchronization semantics, (3) essentially virtual process 
topology, (e.g. with use of ‘point-to-point’ rendezvous and ‘graph’ process 
representation), (4) process-pair exchange, (5) synchronous/asynchronous [multiple 
operations]) operation, and (6) generic C/C++ bindings all within context of a static 
runtime environment. MPI version 2.1 extends these features in support of; (1) shared-
memory model, (2) parallel I/O, (3) dynamic process management, and (4) remote 
memory operations. 
 
multicore API is then used to access multithreaded parallel-processing capability of 
multi-CPU processor architectures, (e.g. ‘quad-core’ Intel/AMD processors) - ePX 
Cluster currently supports two specific API’s for this propose16, (i.e. depending upon 
specific hardware configuration); (1) ‘OpenMP’ (nominal) {14} and (2) ‘CUDA’ {29}. 
The multicore API implements a multithreading, shared-memory multiprocessing model, 
(re: Symmetric Multi Processor (SMP) model), for CPU code components residing at a 
given cluster node. In this case, the multithreading feature is enabled via use of ‘FORK-
EXE’ for creation of slave-threads that may in turn be propagated to any available CPU 
core and subsequently executed ‘in-parallel’. The ePX supercomputer processing model 
leverages this feature to optimize multicore processing based upon a locality-of-reference 
property implicit to the task-kernel-thread hierarchy discussed above. In this context, a 
run-time environment is established by which CPU processing threads may be allocated 
to different processors (i.e. in form of ‘work-sharing’ constructs; compiler directives + 
environment variables are leveraged to influence run-time behaviors). 
 
GPA API is used to access GPU array I/O, (re: generic ePX GPA process-buffer service 
routines), memory management, (re: GPU device/shared memory, parallel cache), and 
thread management functionality, (re: SIMD process model), in form generic 



programming function calls, (e.g. C, C++, Java, Python). In this manner, details associated 
with GPA and architectural template hardware implementations are effectively hidden 
within context of ePX scatter-gather, SIMD instruction pipeline initialization/reuse, and 
datapath I/O operations. Further, ePX confinement of all GPU/SIMD thread-
programming detail to GPU-specific function calls enables three important advantages; 
(1) ePX code portability, (i.e. generic to level of ‘include’ libraries), (2) simplified, (i.e. 
essentially independent), optimization of cluster-node, multicore, and GPA code 
components, , and (3) ePX acceleration library code-encapsulation. GPU APIs currently 
supported by ePX include NVIDIA’s Compute Unified Device Architecture (‘CUDA’) 
{4}{5}{6}{7}{29} and ATI’s Data Parallel Virtual Machine (‘DPVM’) {11}. Standard 
compiler support is also provided for all GPU-resident code. 
 
ePX Framework Pseudo-Code 
 
The ePX software framework is extended to include functionality associated with 
dynamic-dataflow elaboration and dataflow-object parsing part and parcel of the 
previously discussed cluster processing model. The resulting structure is abstracted in 
form of the simple ‘C-esque’ p-code component displayed below. In this case, given the 
dynamic nature of data structures to which processing is applied, a fundamental object-
oriented code representation is employed. In essence, all elaboration, scheduler, scatter-
gather, and pre/post-process functionality is combined under a nested iteration loop 
polling completion of all function components. At start of processing, ‘elaborate(..)’ 
generates a new dataflow-object based upon processing of; (1) an existing design 
representation object, (i.e. ‘originating-node’), or (2) a work-unit already residing on the 
cluster process queue, (i.e. ‘daughter-node’). In either case, a dataflow-object pointer is 
created and passed to the inner (local) processing loop for resource-scheduling and 
scatter-gather. At this level, processing proceeds sequentially through all functional 
components. However, a key subtlety associated with ePX framework is revealed in the 
fact although function invocations are performed sequentially at the CPU, associated 
operations are performed with effectively arbitrary order, number, and concurrency, as 
determined by the process schedule. This enables use of a wide variety of control 
paradigms, based upon diverse optimization schemes, applied resource constraints, and 
desired schedule properties; parallel-process scheduling remains a matter of design 
choice, as long as synchronization and completeness requirements are satisfied. 



// 
// Application ‘Front-End’… 
// 
. 
design_structure  design; 
dataflow_structure *dataflow_pointer; 
scheduler_structure *schedule_pointer; 
. 
. 
. 
do 
{ 
 elaborate(..,dataflow_pointer,..,design,..,&flag_elaborate,..,flag_origin,..); 
 do 

{ 
scheduler(..,dataflow_pointer,..,schedule_pointer,..); 
preprocess(..,schedule_pointer,..); 
scatter(..,schedule_pointer,..); 
message(..,schedule_pointer,..); 
gather(..,schedule_pointer,..); 
postprocess(..,&flag_process,..,schedule_pointer,..); 

} 
while (flag_process); 

} 
while (flag_elaborate); 
. 
. 
. 
// 
// Application ‘Back-End’… 
// 

 
ePX Component 
Function 

 
Description 

  
elaborate(..) Creates and instances dataflow-objects for local and cluster scatter gather; (1) if ‘originating-node’, 

new dataflow-object is created based upon elaboration of dynamic dataflow design representation, 
(2) if ‘daughter-node’, new dataflow-object is created based upon received work-unit residing on 
cluster process-queue, (3) flags completed elaboration over design representation object. 

scheduler(..) Dynamically parses dataflow-object independently along all branches according to component-
task/algorithmic-kernel hierarchy and scatter-gather semantics as expressed by associated graph-
theoretic structure. Cluster/CPU/GPA processing calls are indexed on a schedule object. All 
supercomputer processing control is then dynamically generated based upon contents of reserved 
schedule-control fields. Selected schedule-state components are also placed in reserved data fields 
and leveraged within context of process control. 

preprocess(..) Assembles work-unit instances for scheduled processes in form of pointers to; (1) available cluster-
node/GPU-instance, (2) function to be executed, and (3) associated datapath. Where SIMD pipeline 
reuse is performed, schedule-state is examined to determine if the associated function is already 
present. Completed work-unit assembly is then updated on reserved schedule-state fields, 
subsequently used to conditionally initiate scatter. 

scatter(..) Applies work-units to mapped resources at the appropriate transaction interface; (1) generates all 
associated WRITE operations at transaction buffers, (re: node/kernel-scatter - non-blocking return), 
and (2) updates schedule-state. 

message(..) Manages GPU/GPU - CPU/GPU – NODE/GPU message-passing or exchange of intermediate 
datapath based upon interprocess communication permissions as defined by associated schedule-
control field; (1) formats message/datapath datagrams, (2) generates associated READ/WRITE 
operations at GPA transaction buffer, and (3) updates CPU-resident conditionals, (e.g. associated 
with datapath elaboration). 

gather(..) Applies (blocking) synchronization lock at dataflow ‘gather’, as defined by associated schedule-
control field; (1) generates all associated READ operations at transaction buffers, (2) assembles 
intermediate results for subsequent post-processing, and (3) updates schedule-state. 

postprocess(..) Completes processing at dataflow ‘gather’ as defined by associated schedule-control/state fields; (1) 
applies post-processing operations to complete set of intermediate results, (2) stages result for 
subsequent work-unit assembly or cluster WRITE-BACK, (3) updates schedule-state, and (4) flags 
completion of all processing on dataflow, (re: ‘flag_process’). 

 
Table-1: ePX Framework Component Functions (‘p-code’) 

 



Amdahl’s Law 
 
As indicated in previous discussion of ePX/DSC technology {18}{19}, ePX Cluster is 
directed toward acceleration of complete applications, (i.e. sans application ‘front-end’ 
and ‘back-end’ components; see ePX p-code discussion in reference {19}). In what 
follows, a theoretical acceleration is derived based upon the ePX Cluster template. Non-
parallelized process components, (i.e. including multithreaded CPU processes), are 
assumed pipelined with GPA process components at some specified efficiency. As will 
be seen from the following simple analysis, CPU/GPA pipelining is critical to the stated 
goal of accelerating complete applications. In particular, CPU process pipelining is 
fundamentally dependent upon non-blocking (i.e. ‘asynchronous’) WRITE (‘scatter’) at 
cluster-node and GPA I/O streams whereby local CPU multithread processing may 
continue as soon as a work-unit has been written to any process-buffer. In this manner, 
CPU processes are effectively ‘hidden’ on the global process schedule. At a sufficient 
degree of pipelining, cluster performance is dominated by component parallel-processes. 
Qualitatively, we expect any acceleration (‘A’) due to parallelization will critically 
depend upon; (1) the fraction of code than can be parallelized (‘P’), (2) the degree of 
parallelization (‘N’), and (3) any overhead associated with parallelization2. The basic 
mathematical model is given by Amdahl’s Law {32}: 
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This expression is expanded based upon assumed parallel-plus-pipelined code 
components. In what follows, we assume CCPU ≡ pipeline efficiency constant ∈ [0,1], 
NCPU ≡ multicore order, NGPU ≡ GPU array order, NNODE ≡ cluster node order, PCPU ≡ 
pipelined CPU code fraction, PGPU ≡ GPU accelerated code fraction. A key subtlety is at 
sufficiently high pipelining efficiency, acceleration terms are restricted to those for which 
there exists an explicit scatter-gather, i.e. NODEGPANODEGPUTPGPU NNNNNN == / . 
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Of particular interest is the limiting case: 
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However, with sufficiently large and ‘N’ such that: '' CPUCPU PC
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Amdahl’s Law then becomes: 
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Where the ePX supercomputing model is considered, this relation becomes: 
 
     NODEGPUTPGPUCLUSTER NNNA ⋅⋅≅ /   (8) 
 
This result matches the scaling relation cited above, (re: equation-2; ‘NGPU’ = Number of 
GPU instances in array, ‘NTP/GPU’ = Number of thread processors per GPU), with 
implication of optimally linear cluster-order performance scaling. However, the condition 
expressed in equation-6 also implies, where ‘CCPU’ is fixed at some constant value, 
‘ACLUSTER’ will approach the constant limit expressed in equation-5. Stated differently, in 
absence of perfect CPU/GPA process pipelining, scaling based upon cluster order alone 
cannot be performed indefinitely. Further, this result can easily be generalized for any 
practical cluster implementation, (i.e. not just ePX Cluster). A key point is leveraging of 
CPU multithreading greatly facilitates optimal pipelining and extension of the linear 
scaling relation to higher cluster order. In this manner, the cited performance limit may 
be extended. However, yet another critical subtlety is revealed in form of the essential 
vectorial nature of any optimal scaling relation for ePX Cluster. As previously observed, 
(re: previous processing model discussion), cluster acceleration is constrained by 
assumption of contention-free internode communication, with implication of a direct 
variation between component-task size at any cluster-node and cluster order, (i.e. 
‘component_task_size(NGPA) ∝ NNODE’→‘NGPA ∝ NNODE’). In this context, ePX 
framework {18}{19} exhibits a most fortuitous property in that ‘CCPU’ also varies 
directly with component task size, (i.e. ‘CCPU ∝ component_task_size(NGPA)’), due to the 
fact for well designed kernels amenable to SIMD/SIMT processing, the fraction of non-
pipelineable code increases only sublinearly relative to associated GPA kernel code. 
Thus, where ePX cluster is considered, the condition for optimal linear scaling, (re: 
equation-6), may in principle be extended to arbitrarily large cluster-order17. 
 
In practical terms, the assumed PC form-factor will engender limits on both ‘NGPU’, (re: 
limit on motherboard PCIe slot-count), and ‘NTP/GPU’, (re: extant GPU technology 
limitations). Thus, at some scale, the linear-scaling property will become invalid based 
upon violation of assumed contention-free interprocess communications. At this point, 
both custom GPU hardware arrays and scalable switch-based network infrastructure may 
be introduced for extended ePX performance scaling. 



Summary 
 
ePX Cluster technology is directed toward acceleration of complete applications on GPU-
based computational cluster architectures. In this context, adoption of a true 
supercomputer processing model at all GPU-accelerated cluster nodes facilitates 
increased CPU/GPU pipelining efficiency cluster-wide. This increased pipelining 
efficiency can be shown to extend GPU acceleration properties to any cluster-based 
application amenable to the SIMD/SIMT processing model. This is in contradistinction to 
acceleration achievable with adoption of any standard CPU/GPU-coprocessor model 
exhibiting generally inferior CPU/GPU pipelining efficiency. In essence, all application 
performance-scaling properties of ePX/DSC are extended to cluster architectures by 
virtue of an optimal scaling relation dominated by SIMD/SIMT acceleration at each 
processing node. ePX Cluster achieves this goal based upon a number of innovations: 
 

(1) Fundamental ‘dynamic-dataflow’ software design representation, 
(2) ‘Distributed-Recursive’ (divide-and-conquer) cluster processing model, 
(3) Multi-Level scatter-gather onto cluster, multicore CPU, and GPA resources based 

upon hierarchical parsing of dataflow-objects at component-task and algorithmic-
kernel granularities, 

(4) Optional datapath virtualization based upon data-server transactions defined at 
originating cluster-node part and parcel of dynamic-dataflow elaboration, 

(5) Parallelization based upon non-blocking calls to multicore CPU, GPA and cluster 
resource APIs, 

(6) Flexible application mapping based upon integration of three distinct component 
processing models; (a) distributed-recursive (cluster), (b) multithreaded RISC 
(multicore CPU), and (c) SIMD/SIMT (GPU), 

(7) Enhanced software reuse and transportability based upon; (a) adoption of generic 
process queues for cluster, CPU, and GPA resources, and (b) virtualization of all 
hardware implementation detail to level of process-queue service routines, 

(8) Enhanced CPU/GPA process pipelining efficiency based upon multicore CPU 
parallelization/multithreading capability, 

(9) Extended cluster application performance scaling property based upon; (a) 
increased Amdahl Limit at each cluster-node, (b) vectorial ‘NNODE × NGPU × 
NTP/GPU’, (i.e. NNODE ≡ Number Cluster Nodes, NGPU ≡ Number GPUs per Array, 
NTP/GPU ≡ Number Thread Processors per GPU), scaling property at internode 
communication bandwidth constraint, (c) sublinear growth of any non-
pipelineable code fraction, and (d) use of scalable internode communications 
infrastructure, (e.g. ‘layered-switch’ network). 

 
ePX Cluster is useful for accelerating any cluster-based software application for which 
the indicated supercomputing model is appropriate. Broad application categories include; 
(1) scientific, (2) engineering, (3) mathematical modeling, (4) Bayesian networks, et al. 
Particular examples include; (1) fluid dynamics, (2) computational weather, (3) 
computational chemistry/biology, (4) geophysics, (5) astrophysics/cosmology, (6) 
quantum fields, (7) computational finance, (8) network simulation, (9) solid state physics, 
et al. 



 
Note1 – enParallel Xcelleration technology (ePX) - patent pending. 
 
Note2 – A ‘precedence’ semantic is imposed with respect to equivalent graph structure; graph ‘node’ is equivalent to some application 
component possessed of function-binding and directed graph arc implies function at arc-root must complete before function at arc-tip 
begins. 
 
Note3 – This assertion is based in application of “Rent’s Rule” {26} under conditions whereby all terminals exposed at lower 
hierarchy elaboration are promoted to top hierarchy, (i.e. cluster internode communications envelope). 
 
Note4 – An ‘sg-complete’ (scatter-gather complete) graph is defined as a non-cyclic digraph originating at a single node with 
outorder > 1 and terminating at a single node with inorder > 1 and for which at least one complete path passes through every node in 
the graph. 
 
Note5 –Interconnect technology standard: point-to-point, bidirectional, serial link with 8b/10b encoding – supports assorted serial 
rates and channel bonding. 
 
Note6 –Ubiquitous LAN technology standard: frame-based, CSMA/CD. 
 
Note7 – Analogous to recursive function calls in ‘C/C++’. 
 
Note8 – In this context, ‘data’ parallelism refers to a single kernel consisting of more or less identical threads executing in parallel 
according to the SIMD processing model - ‘task’ parallelism refers to a kernel sequence co-resident in GPU memory, (note this usage 
of ‘task’ remains distinct from that associated with ‘task’ scatter-gather on cluster infrastructure). 
 
Note9 – The scatter-gather abstraction employed by ePX in form of generic operations on process queues greatly simplifies the ePX 
programming model in that implementation details associated with any specific architectural template or hardware implementation 
are uniformly pushed to low-level service routines. In this manner, ePX application code remains highly transportable to the level of 
requiring only build-library customization for any distinct cluster node. 
 
Note10 – For example, when compared with an alternative approach whereby a single ‘control’ node performs all scheduling and 
scatter-gather operations, superior parallelization is achieved due to the fact processing on all dataflow branches is not serialized on 
a single CPU process thread. 
 
Note11 – Distributed scheduler and scatter-gather operations will also distribute all related cluster communications in time resulting 
in lower internode collision/contention probability. 
 
Note12 – Important examples include; (1) resolution of dataflow conditionals, (2) structured interprocess communications 
management, and (3) component parallel process set-up/tear-down. 
 
Note13 – At present, ‘conditional scatter-gather’ is restricted to the initiating cluster-node. 
 
Note14 – In this instance, instructions are already present in GPU workspace, (i.e. ‘device’ memory). Thus, a complete work-unit 
assembly, and WRITE to the GPA process queue is not required. 
 
Note15 – In this application component, a large-scale 4-component block diagonal matrix is scattered to concurrent component tasks 
implementing; (1) linear system solver, (Gauss-Seidel; ‘CT0’), (2) finite series summation for matrix exponential, (i.e. ‘eA’;’ CT1’), and 
(3) eigenvalue/eigenvector calculation, (‘QR’ algorithm; ‘CT2’, ‘CT3’). 
 
Note16 – ‘OpenCL’ {33} support will be added when a standard implementation becomes available. 
 
Note17 – This holds subject to obvious hardware constraints at any given node beyond which locally processed component-tasks are 
not fully parallelized. 
 
Note18 – Equivalently, any GPU-accelerated architecture capable of executing ePX Framework software and integrating Cluster, 
CPU, and GPA processing resources may be substituted for ePX/DSC. 
 
Note19 – Nominally, 4-10 nodes, depending upon specific hardware configuration. 
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