
‘ePX’ Cluster Supercomputing

James Glenn-Anderson, Ph.D. CTO enParallel, Inc.

Introduction

The essential basis of all ePX1 technology is implementation of a true supercomputer
processing model based upon multi-CPU/Graphics Processor Unit Array (GPA)
architectural templates {18}{19}. In this configuration, the ePX Desktop Super-
Computer (ePX/DSC) functions as a stand-alone PC-based scientific workstation for
which processing performance is dominated by GPA order and the number of active
thread-processors-per-GPU, (re: discussion of Amdahl’s Law in “ePX Supercomputing
Technology” whitepaper {19}). Key advantages associated with ePX include; (1) parallel
Single Instruction Multiple Data (SIMD) thread-processing employed by GPU’s
facilitates broad-spectrum acceleration of algorithmic kernels commonly used in
scientific computation, and (2) CPU/GPA process-pipelining (overlap) facilitates
acceleration of complete applications well beyond capability associated with the standard
CPU/GPU coprocessor model {19}. Theoretical analysis informed by comprehensive
empirical testing suggests performance of a single ePX/DSC workstation will compare
very favorably with small workstation clusters19 based on standard PC/CPU
configurations. In simplest terms, this result is rooted in three considerations; (1) O(101)
– O(103) processing speed-up based upon an ‘NGPU × NTP/ GPU’ acceleration factor,
(‘NGPU’ ≡ Number GPU’s per GPA, ‘NTP/ GPU’ ≡ Number Thread-Processors per GPU),
(2) essentially collision-free CPU/GPA interprocess communications based upon use of
high-speed local interconnect, (e.g. ‘PCIe’, ‘HyperTransport’), and (3) CPU/GPA
concurrency based upon non-blocking/asynchronous (‘streaming’) API transaction
model.

It is interesting to note ePX advantages may be scaled to higher performance levels in
essentially two ways; (1) custom hardware solutions based upon ever higher GPA order,
and (2) cluster-processing, (i.e. adoption of a cluster-computing architecture). Each
approach offers advantage of higher theoretical processing bandwidth. However, where
physical space is not a significant issue, node clustering based upon standard PC form-
factor remains a preferred approach to ePX performance scaling. This claim is motivated
by; (1) relative ease with which a cluster may be implemented, (i.e. based upon
availability of standardized API resources and COTS hardware components), and (2)
realization of superior cost/performance ratio and scaling properties where the cluster
approach is combined with the ePX supercomputer processing model. In particular, the
custom hardware approach can engender significant difficulty and complexity; (1)
significant incremental NRE cost, (2) challenging heat-transfer/cooling problems, (3)
specialized API development effort, (4) local-interconnect total bandwidth constraint, and
(5) local-interconnect form-factor constraint, (e.g. number of PCIe or HyperTransport
slots). In what follows, we review key technical aspects of ePX Cluster1 technology.

Copyright © 2009 enParallel, Inc. All Rights Reserved

Cluster Architecture

The ePX Cluster architectural template is based upon more or less standard computer
network communications infrastructure with ePX/DSC workstations18 placed at each
processing node, (i.e. see ePX/DSC architectural template description in references
{18}{19}). Two network communications standards are currently supported; (1) Ethernet
{28}, and (2) InfiniBand {27}. ‘InfiniBand’ is based upon network switch PHYsical
layer (PHY) with channel bonding features, while ‘Ethernet’ employs a far simpler
CSMA/CD PHY. Of the two, InfiniBand exhibits far superior network scaling properties,
(i.e. as one adds processing nodes). However, Ethernet is also far less expensive and
available in form of commodity hardware components. Further, Ethernet has proven
sufficient for a wide range of cluster processing applications. In what follows, Ethernet is
assumed as the nominal ePX Cluster communications infrastructure, with understanding
‘Ethernet’ may be replaced with ‘InfiniBand’ for large-scale ePX Cluster solutions.

The fundamental concept for ePX supercomputer processing model implementation on
clusters is parallel execution of component tasks distributed to multiple cluster-nodes,
(i.e. see processing model discussion below). In figure-1, the nominal ePX Cluster
architectural template is displayed schematically in block diagram form; component-tasks
are distributed over an Ethernet-based network part and parcel of ePX scatter-gather.
Cluster ‘NODE0’ is further expanded in form of the ePX CPU/GPA architectural
template. In this case, the network is hierarchically ‘flat’. However, the principle remains
fully extensible to multi-cluster ‘grid’ networks, (i.e. exhibiting some form of network
hierarchy). The ePX supercomputer model requires application level access to network
communications infrastructure, (re: network socket-based interprocess communications),
and a variety of standard TCP/IP-based {31} message-passing Applications
Programming Interface (API) libraries may be employed for this purpose, (e.g. ‘MPI’
{15}{16}, ‘OpenMPI’ (Linux) {12}, and ‘MPICH’ (Windows) {17}).

Figure-1: ePX Cluster Architectural Template

Processing Model

Workstations based upon CPU/GPU-coprocessor architectural templates have already
been clusterized for extended performance scaling {2}{9}. However, ePX Cluster
extends this idea so as to realize all advantages derived from implementation of the ePX
supercomputer processing model at all cluster-nodes, (i.e. ePX/DSC at each processing
node). In particular, aside from the raw acceleration potential inherent a GPU array, it
will be shown ePX Cluster employs a highly flexible task-kernel-thread process
hierarchy by which; (1) spatio-temporal data coherence properties may be exploited
cluster-wide, and (2) I/O constraint boundaries are more easily placed at associated
processing performance constraints for realization of highest performance potential.

ePX Cluster scaling is achieved by virtue of an enhanced parallelism applied to dataflow2
structures larger than what might be parallelizable on a single ePX processing node. In
effect, the ePX supercomputer processing model is extended to a task-kernel-thread
application decomposition, with task processing distributed to cluster-nodes part and
parcel of GPA scatter-gather operations already applied to kernel and thread
components. A critical subtlety emerges in that total ePX node processing bandwidth
admits mapping of generally larger task-components when compared with standard PC
nodes at a constant inter-node communications envelope, or an equivalent total
processing time. Assuming perfect load-balancing and I/O constraint boundaries placed
at the associated multi-CPU/GPA processing performance constraint boundaries, (i.e. no
processing element stalls for lack of datapath; see Amdahl’s Law discussion below),
highest performance potential is realized at a total cluster acceleration (‘ATOTAL’; ‘NNODE’
≡ Number cluster processing nodes) given by:

 NODENODETOTAL ANA ⋅= (1)

At perfect multi-CPU/GPA pipelining, (re: Amdahl’s law discussion in {19}), over all
cluster nodes, theoretical maximum ePX Cluster performance potential is given by,
(‘NGPU’ ≡ Number of GPU instances in array, ‘NTP/GPU’ ≡ Number of thread processors
per GPU):

 GPANODEGPUTPGPUNODENODENODETOTAL NNNNNANA ⋅=⋅⋅≅⋅= / (2)

Thus, we observe a triple-axis scaling relation unique to ePX Cluster - linear scaling in
the number of cluster processing nodes, number of GPU’s employed at a (cluster)
processing node, and number of parallel thread processors per GPU. One might surmise
scaling may be performed more or less equivalently along any axis and to some extent
this is true. However, this analysis engenders implicit assumption of collision-free inter-
node communications characteristic of parallel and tightly coupled cluster processing.
Thus, at any collision-free constraint boundary, cluster node I/O bandwidth must
proportionally decrease as one increases ‘NNode’. This requirement may be satisfied with
processing of sufficiently large component tasks at each node, at constant-acceleration3.
Assumption of a constant-acceleration constraint in turn implies concomitant scaling in
‘NGPA’. Thus, the aforementioned triple-axis scaling relation is understood as

fundamentally vectorial. In particular, cluster performance scaling hinges upon the fact
ePX optimized CPU/GPA performance facilitates reduced internode communication
bandwidth.

An example application dataflow15 with superimposed component task partition is
displayed in figure-2. Noting communications internal to any given component task are
local to a single cluster-node, (i.e. don’t appear in the internode communications budget),
it can be shown internode bandwidth requirements may be controlled at associated
internode I/O boundaries with adoption of simple conditions on equivalent subgraph
structure3,4. Qualitatively, the number of algorithmic kernels comprising a given
component-task, (i.e. ‘size’), determines internode bandwidth overhead and the number
of CPU/GPA resources available to a given component-task determines performance at a
given node. This essential relationship is then leveraged as basis for optimizing cluster
performance at the internode communications constraint boundary, (re: equation-2).

Figure-2: Example DataFlow Component-Task Elaboration

ePX Cluster extends the supercomputer processing model described in “GPU-based
Desktop Supercomputing” {18} and “ePX Supercomputing Technology” {19} to scatter-
gather distribution of processing threads across the cluster infrastructure. In effect, a
hierarchical schema is employed whereby application component-tasks are distributed to

processing nodes, algorithmic kernels are distributed to GPUs, and threads are processed
at each GPU according to a parallel SIMD (vector) model. Thus, hierarchical software
decomposition and parallel-processing at each level of hierarchy is implied throughout.

The ePX supercomputing model is distinguished by optimal scheduling against GPA
processing resources. In particular, algorithmic kernels are dynamically mapped to GPU
instances (scheduled) based upon; (1) GPU-element availability and (2) opportunistic
SIMD instruction pipeline reuse. In this manner SIMD Cyclostatic Thread Residency
(‘CTR’; see discussion in ref. {19}) is effectively maximized at any GPU instance,
affording highest possible acceleration efficiency cluster-wide. In present context, ‘CTR’
is defined as a measure on the expected proportion of time during which the instruction
pipeline is performing actual datapath calculations, (e.g. as opposed to device I/O,
instruction pipeline initialization, and thread synchronization). Associated scatter-gather
distribution of work-units consisting of processing threads and any associated datapath to
GPA resources is performed according to scheduler state. A given thread-set may be
applied to a GPU instance at initialization or may already exist in situ as result of a
previous processing cycle. In the latter case, the scheduler will opportunistically forego
pipeline re-WRITE/initialization, (re: instruction pipeline reuse), and apply only datapath
during a given scatter cycle. In this manner, algorithmic kernels are parallelized at the
GPA transaction buffer and thread-sets optimally processed in parallel within GPU/SIMD
instruction pipelines. This bipartite parallelism critically depends upon the fact scatter at
the GPA transaction buffer is non-blocking. Thus, the CPU does not have to wait for
completion of a GPU processing cycle. In this manner, CPU/GPA thread processing may
be effectively overlapped. Note gather remains blocking according to the associated
dataflow representation and implied scheduler synchronization semantics. ePX
Framework further implements all required scheduler, scatter-gather, and CPU/GPA
pipelining management functionality based upon an abstraction by which work-unit
structure and interprocess communications implementation details are effectively hidden.
In effect, all such details are pushed to process-queue service routines. Thus, ePX
management operations remain generic across all multicore-CPU/GPA and derivative
cluster architectural templates regardless of the specific nature and location of process
components.

At any ePX node, distinct scatter-gather process queues are maintained for each mapped
processing resource. Service routines attached to these queues are responsible for work-
unit WRITE/READ transactions at associated buffers. ePX Cluster employs three such
buffer classes and associated methods corresponding to GPA, CPU, and NODE (cluster)
resources. Multi-CPU/GPA transaction sequences are already described in “ePX
Supercomputing Technology” {19}. NODE transactions are mitigated by an associated
interprocess-communications API. Depending upon application requirements, Operating
System (OS), and architectural template, a variety of (interprocess communications)
API’s are supported; (1) MPI {13}{15}{16}{17}, (2) OpenMPI {12}, and (3) OpenMP
{14}, (i.e. see ‘ePX Middleware’ discussion below). The aforementioned scatter-gather
service routines then implement API-specific calls for transparent access to a given
processing resource. In standard configuration, ePX Cluster employs three distinct APIs

for this purpose; (1) CUDA (GPA) {4}, (2) OpenMP (multi-core CPU), and (3) MPI
(cluster-node).

Nominal ePX Cluster scatter-gather pathways are displayed in figure-3. Component
tasks are placed at cluster nodes as daemons, or spawned via ‘FORK-EXE’ and
propagated over the cluster network, (i.e. see ePX Middleware discussion below;
‘MOSIX’ references {23}{24}{25}). In this specific case, component-tasks originate at
ePX/DSC-NODEN and are propagated to all other nodes. At NODE0, distribution of
algorithmic kernels to GPA elements, (i.e. scatter-gather), and associated subtasks to
multicore CPU, (i.e. multithreaded), are also displayed.

Figure-3: ePX Cluster Scatter-Gather Pathways

Within context of any application, all ePX Cluster nodes remain fully capable of
performing scatter-gather on any unused cluster resource. Thus, dataflow-object parsing,
schedule generation, work-unit composition and scatter-gather are all distributed
according to the task-kernel-thread hierarchy. In this manner, all cluster resources may be
brought to bear in highly flexible manner, with maximal parallelization10 and minimal
impact upon internode communications resources11. Application execution is initiated at
a single control node with discovery and registration of all available cluster nodes
followed by schedule generation. Application processing proceeds with work-unit
distribution to peripheral cluster resources per the schedule part and parcel of the
assumed supercomputer processing model; associated datapath may be propagated as an
explicit work-unit component or virtualized based upon data-server transactions at the
originating cluster-node, (i.e. part and parcel of dataflow elaboration). Upon receipt of a
work-unit at a peripheral cluster-node, the resident ePX-manager initiates discovery and
registration of available cluster resources, followed by generation of a local schedule,
followed by scatter-gather more or less identical to that performed on the originating
node. A key subtlety is the descriptive term ‘component-task’ is understood as referring

to processing of a specific dataflow-object and application components (software)
present at any associated cluster-node exist as copies of the code running on the
originating cluster-node. This has significant ramification for both ePX software design
and FORK-EXE-based (component) task distribution {23}{24}{25}.

Scheduler

ePX-scheduler establishes a basic organizational schema for all scatter-gather operations
on cluster processing resources according to process dataflow. Where ePX Cluster is
considered, an initiating node performs dataflow elaboration, followed by schedule
generation, followed by work-unit assembly and distribution (scatter-gather) onto the
cluster. Cluster schedule optimization is based upon minimization of total processing
time subject to maximum memory bandwidth and interprocess bandwidth constraints. An
immediate consequence of this constrained optimization is minimal-processing-time is
generally not equivalent to maximal-parallelization. At the performance boundary, a
trade-off is established between speed-up due to parallelization and degradation due to
associated communications overhead, (re: contention-free access to processing
resources). This trade-off is managed by synchronized propagation of control,
instructions, and datapath over communications infrastructure based upon a tightly-
coupled process schedule. Where ePX Cluster is considered this essential trade-off is
rooted in the effectively ‘flat’ nature of cluster-node communications infrastructure.

An example ePX Cluster-node component-task dataflow is displayed in figure-4. This
dataflow is understood as being generated part and parcel of dynamic process-scheduling.
In present context, ‘dynamic scheduling’ is seen to imply presence of (process)
conditionals at an originating cluster-node by which dataflow objects are generated,
parsed, and distributed to cluster-node resources. Conditionals associated with task/kernel
synchronization, CPU process pipelining, and instruction pipeline reuse, (re: are updated
at each processing cycle according to dataflow elaboration. Once generated, dataflow
processing is effectively identical at all cluster-nodes. In figure-4, component-tasks are
color-coded based upon mapping to local resources, (i.e. ‘yellow’) or distributed via
scatter-gather to another cluster-node, (i.e. ‘blue’).

While any of a multitude of approaches of varying complexity may be employed for
scheduler design, ePX-scheduler is currently based upon a particularly simple ‘greedy’
heuristic affording robust and near-optimal performance; “Everything that can be
scheduled is scheduled”. The scheduler algorithm is also considered distributed-recursive
in the sense that; (1) any dataflow-object scattered onto the cluster will necessarily lead to
scheduler invocation under aegis of an ePX-manager copy, albeit on a distinct processing
node (distributed), and (2) the original dataflow is hierarchically disassembled and
processed piecemeal, (i.e. ‘divide and conquer’), by a flow-dependent sequence of
scheduler invocations (recursive); in this instance full recursion semantics7 accrue based
upon the ‘call-back’ property implicit to scatter-gather.

Figure-4: ePX Cluster-node Component-Task DataFlow Example

Cluster internode communications are typically based upon InfiniBand5 {27} or Ethernet6
{28} PHY; InfiniBand represents a favored cluster/supercomputer interconnect
technology due to availability of a scalable-bandwidth PHY, while Ethernet remains far
more ubiquitous and relatively low-cost. However, in present context, relative advantages
and disadvantages are obviated in face of the fact each engenders some contention-free
bandwidth constraint capable of significantly impacting cluster performance. An essential
point is collision/contention resolution remains a fundamentally statistical process with
ancillary overhead; internode communication must then be considered ‘lossy’ with result
expected (internode) communication rates remain less than maximal. Thus, statistical
limits are placed upon the degree to which component task processes may be tightly
coupled. This effect is displayed in figure-5 where component-task time intervals are
padded with expected statistical wait (‘OVerhead’) intervals. As shown by the expanded
CPU/GPA task schedule for CT0, all kernel and thread execution intervals associated with
that task are then similarly padded. In this manner, performance at all levels of processing
hierarchy is effectively reduced. Further, at fixed equivalent internode bandwidth, these
effects tend to increase as cluster nodes are added, (re: cluster scaling properties), with
result intertask coupling and overall processing efficiency is further degraded. In this
manner, the aforementioned task-parallelization/communications-overhead performance
optimization trade-off emerges as a cluster scaling property.

Figure-5: ePX Cluster Task-Schedule Example

Scatter-Gather

The distributed-recursive nature of ePX-scheduler then implies associated scatter-gather
operations will also exhibit a distributed-recursive pattern. In effect, any ePX-manager
instance parses an input dataflow-object, schedules processing of task-components on
some combination of (local) multi-CPU/GPA and cluster-node resources, and then
scatters all process components. Kernels are processed locally to the limit of available
GPA resources and the remainder composed as task-components and scattered to
available cluster-node resources. This process is then repeated at any receiving cluster-
node part and parcel of distributed-recursive scatter-gather. In this manner, all cluster
resources may be brought to bear based upon the assumed task-kernel-thread hierarchy
and ePX supercomputer processing model. A critical advantage is realized whereby
mapping of software components to processing resources is rendered highly flexible. This
flexibility is expressed in form of specific parametric dependencies commonly associated
with a full-featured supercomputer processing model, (e.g. parallelization
hierarchy/order, work-unit composition/order, and process pipeline depth). A further
advantage is gained in that internode communications are greatly reduced relative to an
approach whereby all scatter-gather is performed at a central control-node, (i.e. initiating
node).

The ePX supercomputer processing model critically depends upon non-blocking ‘scatter’
at all transaction buffers, as implemented by the GPU, multi-CPU, and cluster-node
API’s. This feature enables overlap of GPU processing at all array elements and
pipelining of cluster-node and multi-CPU/GPA processes. The result is an effective
concurrent process schedule by which true supercomputer performance may be realized.
On the other hand, ‘gather’ operations throughout the dataflow remain blocking, as

defined by (local) scheduler synchronization semantics. Scheduler synchronization is
defined according to dataflow topological, (i.e. ‘graph theoretic’), structure by which
specified inputs must be concurrently present in order for processing to proceed along
some dataflow branch. Where ePX Cluster is considered, synchronization events are
resolved at distributed ePX-manager instances.

‘Scatter-Gather’ work-unit assembly is based upon a dynamic dataflow design
representation combined with an algorithmic kernel decomposition created part and
parcel of ePX applications software development methodology. In particular, ePX
software design is fundamentally expressed as a global dataflow-object with tasks
mapped to cluster nodes, algorithmic kernels mapped to GPU instances, and threads
mapped to GPU thread processors. Concurrent kernels nominally express data-
parallelism8 constrained by available GPU device memory and processing resources and
optimally sized based upon; (1) SIMD cyclostatic residency, (2) GPA load-balancing,
and (3) SIMD instruction pipeline reuse. Concurrent tasks nominally express both task-
parallelism8 and data-parallelism; with expectation data-parallel elements will ultimately
be extracted and mapped to local multi-CPU/GPA resources.

Multicore CPU/GPA Pipeline

Where the multi-CPU/GPA architectural template is being considered, control is returned
to the CPU after any non-blocking scatter operation, (i.e. see CPU/GPA Pipeline
discussion in {19}). While function calls at the CPU are nominally processed
sequentially according to some variant on the Von Neumann model, use of multicore
CPU admits multi-threaded processing of kernels mapped to the CPU process-queue.
While scatter-gather is not employed, multithreading is parallelized based upon an
assumed Symmetric Multi-Processing (SMP) model, with full Operating System (OS)
and runtime-system support implied. In effect, the pipelined CPU code components in
CPU/GPA {18}{19} may be regarded as replaced by a third axis of parallel-processing in
multi-CPU/GPA. In this context, CPU code parallelization is by definition ‘local’ - total
parallelization may be increased with little or no increased internode communication. Of
course, at any given node-instance, some non-parallelizable code fraction necessarily
remains12. However, the generally shorter CPU-process timelines associated with
multicore facilitates improved local CPU/GPA pipelining and generally improved global
performance. In present context, multicore CPU parallel-processing model
implementation is greatly facilitated by; (1) ePX use of generalized process queues, and
(2) availability of standardized (multicore) API libraries, (e.g. ‘OpenMP’ {14},
‘OpenCL’ {33}, and ‘CUDA’ {29}), as basis for associated process-queue service
routines. From a global cluster-processing perspective, Amdahl’s Law still holds, albeit
in a slightly different way, (i.e. see Amdahl’s Law discussion below).

Kernel Dependencies and Composition

Optimal kernel processing part and parcel of the ePX-Cluster processing generally results
under conditions where mapped kernels remain fully encapsulated, and data-parallel8. In
this context, an encapsulated kernel is self-contained; all required data and instructions

are available at SIMD pipeline initialization. Thus, once the instruction pipeline is
initialized, no ancillary interprocessor communication, (i.e. ‘message-passing’), or thread
resynchronization is required for completion of a processing cycle. Additionally, data-
parallel kernels are typified by a single I/O process and single SIMD pipeline
initialization during any processing cycle. Conversely, a task-parallel8 kernel is actually a
‘composition’ of multiple data-parallel kernels, each of which requires a distinct I/O
process and SIMD pipeline initialization during any processing cycle.

Generally speaking, any use of non-encapsulated kernels in an application dataflow
necessarily implies additional CPU processing and resynchronization across CPU/GPU
process instances; any increased CPU processing gives rise to increased CPU/GPA
pipeline overhead and GPU resynchronization reduces equivalent SIMD processing
efficiency. However, there exist important circumstances requiring use of non-
encapsulated kernels; (1) dynamic scatter-gather control, and (2) passing intermediate
results between GPA elements. In the former, global state is updated based upon kernel
processing output and the process dataflow modified according to conditionals in turn
based upon global state. Once activated, any dataflow-object thus generated is scattered
as described above13, (re: ‘processing model’ discussion). In the latter case, a given
kernel too large for execution on a single GPU is split into multiple fractional-kernels,
effectively requiring use of a Symmetric Multi-Processor (SMP), (i.e. shared-memory),
processing model {30}. This scenario may be further complicated by distribution of
fractional kernels across multiple cluster nodes. Difficulties emerge in that the cluster
architectural template is characteristic of a distributed memory system; while the
message-passing interface already present at each cluster-node can be leveraged for
creation of a virtual shared-memory image, considerable performance overhead may
accrue based upon ‘MUTEX’ conditions required for guaranteed memory consistency.
Nevertheless, while appearance of any overhead is undesirable it is also important to note
use of non-encapsulated kernels provides additional resource mapping options. In fact,
some applications will require this feature in order to satisfy hardware resource
constraints or otherwise optimize the process schedule.

Load-Balancing across all mapped cluster-resources generally facilitates mutual
synchronization of component processes as basis for overall performance optimization.
As point of fact, process kernels generated part and parcel of dataflow elaboration will
accrue in a variety of ‘sizes’. Thus, an important optimization technique emerges in form
of optional kernel composition, (re: ‘task-parallelism’), at a GPU process-buffer; a
number of small kernels may be composed in form of a single work-unit, (i.e. equivalent
to a ‘task-parallel’ kernel), and applied to the GPA in a single scatter operation.
However, each associated instruction pipeline initialization14 and I/O process still serve to
reduce SIMD processing efficiency. In this manner, another essential performance
optimization trade-off is revealed in form of GPU ‘load-balance versus efficiency’.

An essential point is, despite incurred overhead, both non-encapsulation and task-
parallelism remain useful as design options. Further, any valid process schedule
optimization must necessarily include overhead associated with kernel dependencies and
work-unit composition.

ePX Middleware

The middleware software component provides access to processing resources via a
standardized set of Application Programming Interfaces (API), based on a generic
software framework development model. These API components correspond to; (1)
cluster-node, (2) multicore CPU, and (3) GPA processing resources accessed by service
routines attached to ePX process queues. Each API provides a hardware-abstracted
transaction model in support of non-blocking scatter-gather plus ancillary interprocess
communication, (i.e. including local GPU-GPU transactions). In this manner, ePX
Cluster is understood to employ a hybrid parallel-processing model by which
concurrency at cluster, multicore, and GPA levels of architectural hierarchy is achieved.

cluster-node API is used to distribute and manage component tasks across cluster
infrastructure consisting of some set of processing nodes and an accompanying internode
network communications resource. In particular, this API is leveraged to overlap network
communication with CPU/GPA processing based upon a global communications
schedule. Where ePX Cluster is considered, cluster-node API is nominally based upon
the Message Passing Interface standard {15}{16} and may occur in one of two specific
forms; (1) ‘OpenMPI’ (Linux) {12}, and (2) ‘MPICH’ (Windows) {17}. The basic MPI
version 1.3 implements a distributed memory model with; (1) TCP/IP-based interprocess
communications, (2) flexible synchronization semantics, (3) essentially virtual process
topology, (e.g. with use of ‘point-to-point’ rendezvous and ‘graph’ process
representation), (4) process-pair exchange, (5) synchronous/asynchronous [multiple
operations]) operation, and (6) generic C/C++ bindings all within context of a static
runtime environment. MPI version 2.1 extends these features in support of; (1) shared-
memory model, (2) parallel I/O, (3) dynamic process management, and (4) remote
memory operations.

multicore API is then used to access multithreaded parallel-processing capability of
multi-CPU processor architectures, (e.g. ‘quad-core’ Intel/AMD processors) - ePX
Cluster currently supports two specific API’s for this propose16, (i.e. depending upon
specific hardware configuration); (1) ‘OpenMP’ (nominal) {14} and (2) ‘CUDA’ {29}.
The multicore API implements a multithreading, shared-memory multiprocessing model,
(re: Symmetric Multi Processor (SMP) model), for CPU code components residing at a
given cluster node. In this case, the multithreading feature is enabled via use of ‘FORK-
EXE’ for creation of slave-threads that may in turn be propagated to any available CPU
core and subsequently executed ‘in-parallel’. The ePX supercomputer processing model
leverages this feature to optimize multicore processing based upon a locality-of-reference
property implicit to the task-kernel-thread hierarchy discussed above. In this context, a
run-time environment is established by which CPU processing threads may be allocated
to different processors (i.e. in form of ‘work-sharing’ constructs; compiler directives +
environment variables are leveraged to influence run-time behaviors).

GPA API is used to access GPU array I/O, (re: generic ePX GPA process-buffer service
routines), memory management, (re: GPU device/shared memory, parallel cache), and
thread management functionality, (re: SIMD process model), in form generic

programming function calls, (e.g. C, C++, Java, Python). In this manner, details associated
with GPA and architectural template hardware implementations are effectively hidden
within context of ePX scatter-gather, SIMD instruction pipeline initialization/reuse, and
datapath I/O operations. Further, ePX confinement of all GPU/SIMD thread-
programming detail to GPU-specific function calls enables three important advantages;
(1) ePX code portability, (i.e. generic to level of ‘include’ libraries), (2) simplified, (i.e.
essentially independent), optimization of cluster-node, multicore, and GPA code
components, , and (3) ePX acceleration library code-encapsulation. GPU APIs currently
supported by ePX include NVIDIA’s Compute Unified Device Architecture (‘CUDA’)
{4}{5}{6}{7}{29} and ATI’s Data Parallel Virtual Machine (‘DPVM’) {11}. Standard
compiler support is also provided for all GPU-resident code.

ePX Framework Pseudo-Code

The ePX software framework is extended to include functionality associated with
dynamic-dataflow elaboration and dataflow-object parsing part and parcel of the
previously discussed cluster processing model. The resulting structure is abstracted in
form of the simple ‘C-esque’ p-code component displayed below. In this case, given the
dynamic nature of data structures to which processing is applied, a fundamental object-
oriented code representation is employed. In essence, all elaboration, scheduler, scatter-
gather, and pre/post-process functionality is combined under a nested iteration loop
polling completion of all function components. At start of processing, ‘elaborate(..)’
generates a new dataflow-object based upon processing of; (1) an existing design
representation object, (i.e. ‘originating-node’), or (2) a work-unit already residing on the
cluster process queue, (i.e. ‘daughter-node’). In either case, a dataflow-object pointer is
created and passed to the inner (local) processing loop for resource-scheduling and
scatter-gather. At this level, processing proceeds sequentially through all functional
components. However, a key subtlety associated with ePX framework is revealed in the
fact although function invocations are performed sequentially at the CPU, associated
operations are performed with effectively arbitrary order, number, and concurrency, as
determined by the process schedule. This enables use of a wide variety of control
paradigms, based upon diverse optimization schemes, applied resource constraints, and
desired schedule properties; parallel-process scheduling remains a matter of design
choice, as long as synchronization and completeness requirements are satisfied.

//
// Application ‘Front-End’…
//
.
design_structure design;
dataflow_structure *dataflow_pointer;
scheduler_structure *schedule_pointer;
.
.
.
do
{
 elaborate(..,dataflow_pointer,..,design,..,&flag_elaborate,..,flag_origin,..);
 do

{
scheduler(..,dataflow_pointer,..,schedule_pointer,..);
preprocess(..,schedule_pointer,..);
scatter(..,schedule_pointer,..);
message(..,schedule_pointer,..);
gather(..,schedule_pointer,..);
postprocess(..,&flag_process,..,schedule_pointer,..);

}
while (flag_process);

}
while (flag_elaborate);
.
.
.
//
// Application ‘Back-End’…
//

ePX Component
Function

Description

elaborate(..) Creates and instances dataflow-objects for local and cluster scatter gather; (1) if ‘originating-node’,

new dataflow-object is created based upon elaboration of dynamic dataflow design representation,
(2) if ‘daughter-node’, new dataflow-object is created based upon received work-unit residing on
cluster process-queue, (3) flags completed elaboration over design representation object.

scheduler(..) Dynamically parses dataflow-object independently along all branches according to component-
task/algorithmic-kernel hierarchy and scatter-gather semantics as expressed by associated graph-
theoretic structure. Cluster/CPU/GPA processing calls are indexed on a schedule object. All
supercomputer processing control is then dynamically generated based upon contents of reserved
schedule-control fields. Selected schedule-state components are also placed in reserved data fields
and leveraged within context of process control.

preprocess(..) Assembles work-unit instances for scheduled processes in form of pointers to; (1) available cluster-
node/GPU-instance, (2) function to be executed, and (3) associated datapath. Where SIMD pipeline
reuse is performed, schedule-state is examined to determine if the associated function is already
present. Completed work-unit assembly is then updated on reserved schedule-state fields,
subsequently used to conditionally initiate scatter.

scatter(..) Applies work-units to mapped resources at the appropriate transaction interface; (1) generates all
associated WRITE operations at transaction buffers, (re: node/kernel-scatter - non-blocking return),
and (2) updates schedule-state.

message(..) Manages GPU/GPU - CPU/GPU – NODE/GPU message-passing or exchange of intermediate
datapath based upon interprocess communication permissions as defined by associated schedule-
control field; (1) formats message/datapath datagrams, (2) generates associated READ/WRITE
operations at GPA transaction buffer, and (3) updates CPU-resident conditionals, (e.g. associated
with datapath elaboration).

gather(..) Applies (blocking) synchronization lock at dataflow ‘gather’, as defined by associated schedule-
control field; (1) generates all associated READ operations at transaction buffers, (2) assembles
intermediate results for subsequent post-processing, and (3) updates schedule-state.

postprocess(..) Completes processing at dataflow ‘gather’ as defined by associated schedule-control/state fields; (1)
applies post-processing operations to complete set of intermediate results, (2) stages result for
subsequent work-unit assembly or cluster WRITE-BACK, (3) updates schedule-state, and (4) flags
completion of all processing on dataflow, (re: ‘flag_process’).

Table-1: ePX Framework Component Functions (‘p-code’)

Amdahl’s Law

As indicated in previous discussion of ePX/DSC technology {18}{19}, ePX Cluster is
directed toward acceleration of complete applications, (i.e. sans application ‘front-end’
and ‘back-end’ components; see ePX p-code discussion in reference {19}). In what
follows, a theoretical acceleration is derived based upon the ePX Cluster template. Non-
parallelized process components, (i.e. including multithreaded CPU processes), are
assumed pipelined with GPA process components at some specified efficiency. As will
be seen from the following simple analysis, CPU/GPA pipelining is critical to the stated
goal of accelerating complete applications. In particular, CPU process pipelining is
fundamentally dependent upon non-blocking (i.e. ‘asynchronous’) WRITE (‘scatter’) at
cluster-node and GPA I/O streams whereby local CPU multithread processing may
continue as soon as a work-unit has been written to any process-buffer. In this manner,
CPU processes are effectively ‘hidden’ on the global process schedule. At a sufficient
degree of pipelining, cluster performance is dominated by component parallel-processes.
Qualitatively, we expect any acceleration (‘A’) due to parallelization will critically
depend upon; (1) the fraction of code than can be parallelized (‘P’), (2) the degree of
parallelization (‘N’), and (3) any overhead associated with parallelization2. The basic
mathematical model is given by Amdahl’s Law {32}:

()
N
PP

A
+−

=
1

1 (3)

This expression is expanded based upon assumed parallel-plus-pipelined code
components. In what follows, we assume CCPU ≡ pipeline efficiency constant ∈ [0,1],
NCPU ≡ multicore order, NGPU ≡ GPU array order, NNODE ≡ cluster node order, PCPU ≡
pipelined CPU code fraction, PGPU ≡ GPU accelerated code fraction. A key subtlety is at
sufficiently high pipelining efficiency, acceleration terms are restricted to those for which
there exists an explicit scatter-gather, i.e. NODEGPANODEGPUTPGPU NNNNNN == / .

()
N

PPPC
A

GPU
GPUCPUCPU +−−

=
1

1 (4)

Of particular interest is the limiting case:

() GPUCPUCPUGPU
GPUCPUCPU

N PPC
N

PPPC
Lim

−−
=

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

+−−
∞→ 1

1

1

1 (5)

However, with sufficiently large and ‘N’ such that: '' CPUCPU PC

(GPUCPUCPU
GPU PPC
N

P
−−>> 1) (6)

Amdahl’s Law then becomes:

NODEGPA
GPUGPU

CLUSTER NNN
P

N

N
PA =≅=≅

1 (7)

Where the ePX supercomputing model is considered, this relation becomes:

 NODEGPUTPGPUCLUSTER NNNA ⋅⋅≅ / (8)

This result matches the scaling relation cited above, (re: equation-2; ‘NGPU’ = Number of
GPU instances in array, ‘NTP/GPU’ = Number of thread processors per GPU), with
implication of optimally linear cluster-order performance scaling. However, the condition
expressed in equation-6 also implies, where ‘CCPU’ is fixed at some constant value,
‘ACLUSTER’ will approach the constant limit expressed in equation-5. Stated differently, in
absence of perfect CPU/GPA process pipelining, scaling based upon cluster order alone
cannot be performed indefinitely. Further, this result can easily be generalized for any
practical cluster implementation, (i.e. not just ePX Cluster). A key point is leveraging of
CPU multithreading greatly facilitates optimal pipelining and extension of the linear
scaling relation to higher cluster order. In this manner, the cited performance limit may
be extended. However, yet another critical subtlety is revealed in form of the essential
vectorial nature of any optimal scaling relation for ePX Cluster. As previously observed,
(re: previous processing model discussion), cluster acceleration is constrained by
assumption of contention-free internode communication, with implication of a direct
variation between component-task size at any cluster-node and cluster order, (i.e.
‘component_task_size(NGPA) ∝ NNODE’→‘NGPA ∝ NNODE’). In this context, ePX
framework {18}{19} exhibits a most fortuitous property in that ‘CCPU’ also varies
directly with component task size, (i.e. ‘CCPU ∝ component_task_size(NGPA)’), due to the
fact for well designed kernels amenable to SIMD/SIMT processing, the fraction of non-
pipelineable code increases only sublinearly relative to associated GPA kernel code.
Thus, where ePX cluster is considered, the condition for optimal linear scaling, (re:
equation-6), may in principle be extended to arbitrarily large cluster-order17.

In practical terms, the assumed PC form-factor will engender limits on both ‘NGPU’, (re:
limit on motherboard PCIe slot-count), and ‘NTP/GPU’, (re: extant GPU technology
limitations). Thus, at some scale, the linear-scaling property will become invalid based
upon violation of assumed contention-free interprocess communications. At this point,
both custom GPU hardware arrays and scalable switch-based network infrastructure may
be introduced for extended ePX performance scaling.

Summary

ePX Cluster technology is directed toward acceleration of complete applications on GPU-
based computational cluster architectures. In this context, adoption of a true
supercomputer processing model at all GPU-accelerated cluster nodes facilitates
increased CPU/GPU pipelining efficiency cluster-wide. This increased pipelining
efficiency can be shown to extend GPU acceleration properties to any cluster-based
application amenable to the SIMD/SIMT processing model. This is in contradistinction to
acceleration achievable with adoption of any standard CPU/GPU-coprocessor model
exhibiting generally inferior CPU/GPU pipelining efficiency. In essence, all application
performance-scaling properties of ePX/DSC are extended to cluster architectures by
virtue of an optimal scaling relation dominated by SIMD/SIMT acceleration at each
processing node. ePX Cluster achieves this goal based upon a number of innovations:

(1) Fundamental ‘dynamic-dataflow’ software design representation,
(2) ‘Distributed-Recursive’ (divide-and-conquer) cluster processing model,
(3) Multi-Level scatter-gather onto cluster, multicore CPU, and GPA resources based

upon hierarchical parsing of dataflow-objects at component-task and algorithmic-
kernel granularities,

(4) Optional datapath virtualization based upon data-server transactions defined at
originating cluster-node part and parcel of dynamic-dataflow elaboration,

(5) Parallelization based upon non-blocking calls to multicore CPU, GPA and cluster
resource APIs,

(6) Flexible application mapping based upon integration of three distinct component
processing models; (a) distributed-recursive (cluster), (b) multithreaded RISC
(multicore CPU), and (c) SIMD/SIMT (GPU),

(7) Enhanced software reuse and transportability based upon; (a) adoption of generic
process queues for cluster, CPU, and GPA resources, and (b) virtualization of all
hardware implementation detail to level of process-queue service routines,

(8) Enhanced CPU/GPA process pipelining efficiency based upon multicore CPU
parallelization/multithreading capability,

(9) Extended cluster application performance scaling property based upon; (a)
increased Amdahl Limit at each cluster-node, (b) vectorial ‘NNODE × NGPU ×
NTP/GPU’, (i.e. NNODE ≡ Number Cluster Nodes, NGPU ≡ Number GPUs per Array,
NTP/GPU ≡ Number Thread Processors per GPU), scaling property at internode
communication bandwidth constraint, (c) sublinear growth of any non-
pipelineable code fraction, and (d) use of scalable internode communications
infrastructure, (e.g. ‘layered-switch’ network).

ePX Cluster is useful for accelerating any cluster-based software application for which
the indicated supercomputing model is appropriate. Broad application categories include;
(1) scientific, (2) engineering, (3) mathematical modeling, (4) Bayesian networks, et al.
Particular examples include; (1) fluid dynamics, (2) computational weather, (3)
computational chemistry/biology, (4) geophysics, (5) astrophysics/cosmology, (6)
quantum fields, (7) computational finance, (8) network simulation, (9) solid state physics,
et al.

Note1 – enParallel Xcelleration technology (ePX) - patent pending.

Note2 – A ‘precedence’ semantic is imposed with respect to equivalent graph structure; graph ‘node’ is equivalent to some application
component possessed of function-binding and directed graph arc implies function at arc-root must complete before function at arc-tip
begins.

Note3 – This assertion is based in application of “Rent’s Rule” {26} under conditions whereby all terminals exposed at lower
hierarchy elaboration are promoted to top hierarchy, (i.e. cluster internode communications envelope).

Note4 – An ‘sg-complete’ (scatter-gather complete) graph is defined as a non-cyclic digraph originating at a single node with
outorder > 1 and terminating at a single node with inorder > 1 and for which at least one complete path passes through every node in
the graph.

Note5 –Interconnect technology standard: point-to-point, bidirectional, serial link with 8b/10b encoding – supports assorted serial
rates and channel bonding.

Note6 –Ubiquitous LAN technology standard: frame-based, CSMA/CD.

Note7 – Analogous to recursive function calls in ‘C/C++’.

Note8 – In this context, ‘data’ parallelism refers to a single kernel consisting of more or less identical threads executing in parallel
according to the SIMD processing model - ‘task’ parallelism refers to a kernel sequence co-resident in GPU memory, (note this usage
of ‘task’ remains distinct from that associated with ‘task’ scatter-gather on cluster infrastructure).

Note9 – The scatter-gather abstraction employed by ePX in form of generic operations on process queues greatly simplifies the ePX
programming model in that implementation details associated with any specific architectural template or hardware implementation
are uniformly pushed to low-level service routines. In this manner, ePX application code remains highly transportable to the level of
requiring only build-library customization for any distinct cluster node.

Note10 – For example, when compared with an alternative approach whereby a single ‘control’ node performs all scheduling and
scatter-gather operations, superior parallelization is achieved due to the fact processing on all dataflow branches is not serialized on
a single CPU process thread.

Note11 – Distributed scheduler and scatter-gather operations will also distribute all related cluster communications in time resulting
in lower internode collision/contention probability.

Note12 – Important examples include; (1) resolution of dataflow conditionals, (2) structured interprocess communications
management, and (3) component parallel process set-up/tear-down.

Note13 – At present, ‘conditional scatter-gather’ is restricted to the initiating cluster-node.

Note14 – In this instance, instructions are already present in GPU workspace, (i.e. ‘device’ memory). Thus, a complete work-unit
assembly, and WRITE to the GPA process queue is not required.

Note15 – In this application component, a large-scale 4-component block diagonal matrix is scattered to concurrent component tasks
implementing; (1) linear system solver, (Gauss-Seidel; ‘CT0’), (2) finite series summation for matrix exponential, (i.e. ‘eA’;’ CT1’), and
(3) eigenvalue/eigenvector calculation, (‘QR’ algorithm; ‘CT2’, ‘CT3’).

Note16 – ‘OpenCL’ {33} support will be added when a standard implementation becomes available.

Note17 – This holds subject to obvious hardware constraints at any given node beyond which locally processed component-tasks are
not fully parallelized.

Note18 – Equivalently, any GPU-accelerated architecture capable of executing ePX Framework software and integrating Cluster,
CPU, and GPA processing resources may be substituted for ePX/DSC.

Note19 – Nominally, 4-10 nodes, depending upon specific hardware configuration.

References

{1} “Current Trend of Supercomputer Architecture” H. Zhang, Univ. Connecticut
 Dept. of Computer Science and Engineering
{2} “GPU Cluster for High-Performance Computing”, Z. Fan, et al. Center for

Visual Computing and Department of Computer Science, ACM/IEEE
Supercomputing Conference 2004

{3} “SIMT Architecture Delivers Double Precision Teraflops” W. Wong,
 Electronic Design, #19280 10Jul08
 http://electronicdesign.com/Articles/Index.cfm?AD=1&ArticleID=19280

{4} “NVIDIA CUDA Compute Unified Device Architecture – Reference
 Manual”; Version 2.0, June 2008

{5} “NVIDIA CUDA Compute Unified Device Architecture – Programming
 Guide”; Version 2.0, 6/7/2008

{6} “NVIDIA CUDA CUBLAS Library”; PG-00000-002_V2.0, March 2008
{7} “NVIDIA Compute PTX: Parallel Thread Execution”; ISA Version 1.2,
 2008-04-16, SP-03483-001_v1.2
{8} http://www.nvidia.com/object/tesla_gpu_server.html
{9} “GPU Cluster for Scientific Computing and Large-Scale Simulation” Z. Fan, et

al. Stony Brook University ACM Workshop on General Purpose Computing on
Graphics Processors 2004

{10} http://www.gpgpu.com
{11} “A Performance-Oriented Data Parallel Virtual Machine for GPUs”; M. Segal,

M. Peercy, ATI Technologies, Inc.
{12} “Open MPI: Goals, Concept, and Design of a Next Generation MPI Implementation”;

 E. Gabriel, et al. Proceedings 11th European PVM/MPI Users’ Group Meeting
 http://www.open-mpi.org

{13} “MPI Parallelization Problems and Solutions” UCRL-WEB-200945
 https://computing.llnl.gov

{14} “OpenMP Application Program Interface”; Version 3.0 May 2008
 OpenMP Architecture Review Board http://openmp.org

{15} “MPI: A Message Passing Interface Standard Version 1.3”; Message Passing Interface
 Forum, May 30, 2008

{16} “MPI: A Message Passing Interface Standard Version 2.1”; Message Passing Interface
 Forum, June 23, 2008

{17} “Installation and User’s Guide to MPICH, a Portable Implementation of MPI 1.2.7;
 The ch.nt Device for Workstations and Clusters of Microsoft Windows machines”;
 D. Aston, et al. Mathematics and Computer Science Division, Argonne National
 Laboratory

{18} “GPU-based Desktop Supercomputing”; J. Glenn-Anderson, enParallel, Inc. 10/2008
{19} “ePX Supercomputing Technology”; J. Glenn-Anderson, enParallel, Inc. 11/2008
{20} Beowulf Cluster: http://www.beowulf.org
{21} Sun Grid Engine: http://gridengine.sunsource.net
{22} “Beginner’s Guide to SUN GRID ENGINE 6.2 Installation and Configuration”

 http://www.sun.com White Paper September 2008
{23} “The MOSIX Distributed Operating System: Load Balancing for UNIX”; A. Barak,

 et. al. Springer-Verlag Lecture Notes in Computer Science June 1993
{24} “The MOSIX Multicomputer Operating System for High Performance Cluster

 Computing”; A. Barak, O. La’adan Institute of Computer Science Hebrew University
 of Jerusalem

http://electronicdesign.com/Articles/Index.cfm?AD=1&ArticleID=19280
http://www.nvidia.com/object/tesla_gpu_server.html
http://www.gpgpu.com/
http://www.open-mpi.org/
https://computing.llnl.gov/
http://openmp.org/
http://www.beowulf.org/
http://gridengine.sunsource.net/
http://www.sun.com/

{25} “The MOSIX2 Management System for Linux Clusters and Multi-Cluster
 Organizational Grids”; A. Barak A. Shiloh http://www.MOSIX.org

{26} See http://en.wikipedia.org/wiki/Rent's_Rule
{27} “InfiniBand Architecture Specification Volume 1 Release 1.2.1”; InfiniBand Trade

 Association November 2007 Final Release
{28} “1000BASE-T Gigabit Ethernet Tutorial”; Hewlett-Packard Company September

 15,2000
{29} “CUDA Version 2.1” download: http://www.nvidia.com/object/cuda_get.html
{30} “Symmetric Multi-Processing (SMP) Systems on Top of Contemporary Intel

 Appliances”; Jiri Hlusi, Thesis – University of Tampere, Dept. Of Computer and
 Information Sciences December 2002

{31} “TCP/IP Tutorial and Technical Overview – Understanding Networking
 Fundamentals of the TCP/IP Protocol Suite”; L. Parziale, et al. IBM International
 Technical Support Organization December 2006

{32} “Principles of Parallel Programming”; C. Lin, L. Snyder 1st Ed. Addison-Wesley 2008
{33} “The OpenCL Specification”; Khronos OpenCL Working Group, A. Munshi Ed. Version

 1.0, Document Revision 29

http://www.mosix.org/
http://en.wikipedia.org/wiki/Rent's_Rule
http://www.nvidia.com/object/cuda_get.html

