ePX Framework leverages GPU technology for high-performance scientific computing

- PC form-factor, standard OS/Compiler technology
- True supercomputer performance/scaling properties
 - ‘Scatter-Gather’ vs. ‘Co-Processor’
- Accelerates complete applications
 - Fundamental *dynamic-dataflow* application design representation,
 - Cluster/CPU/GPU Array (GPA) processing pipeline at generalized process queues.
- Composite SIMD/SIMT (GPU), SMP (multi-core CPU), and Distributed (CLUSTER) processing model
 - Applied to *dataflow-object/component-task/algorithmic-kernel* design representation hierarchy.
10,000-foot View - II

- ePX Framework - Advantages:
 - Performance
 - Single GPU can deliver up to 500x acceleration (e.g. Monte Carlo, ‘stenciled’ linear [FDTD]).
 - Scalability
 - CPU/GPA pipelining hides CPU processes,
 - Extended tripartite linear-scaling $N_{\text{NODE}} \times N_{\text{GPU}} \times N_{\text{TP/GPU}}$ across Cluster/CPU/GPA resources
 - Flexibility
 - Applicable to diverse algorithmic kernels, complex dataflow structures, (re: SIMT pipeline ‘reuse’),
 - Abstracted Distributed/SMP/SIMT processing model,
 - Portable/Reusable software.
‘ePX Framework’ – How it works

- Dynamic-Dataflow design representation
 - Originating node elaborates an initial dataflow object
 - Dataflow object is parsed into component tasks processed locally or scattered onto Cluster according to a distributed-recursive schema, (i.e. identical component-task processing at every node).
 - Non-Blocking (asynchronous) API calls are employed to overlap Cluster, CPU, and GPA processing.

- Process-Scheduler
 - Structures all scatter-gather operations and process synchronization,
 - Algorithmic kernels are extracted from component tasks and mapped to local CPU/GPU resources

- Hardware details are pushed to service methods on generalized process queues:
 - Cluster - multicore CPU - GPA
Graphics Acceleration is Driving PC Evolution..

- Overall evolutionary trend whereby PCs supplant workstations in complex applications
 - Fundamentally a Moore’s Law phenomenon
- Ever increasing demand for graphics performance
 - AutoCAD, PhotoShop, Gaming, et al.
- PC Architectural Evolution
 - PCIe 2.0 x16
 - CPU/MCH integration, (re: ‘NorthBridge’)
 - Direct MCP connection to CPU, (re: ‘SouthBridge’)
Trend: PCIe 2.0 x16 supplants AGP for high performance graphics
- PCIe 1.1 x16 offers 4GB/s bidirectional transfer rate,
- PCIe 2.0 doubles to 8GB/s.

Trend: GPUs evolve as generic vector processors
- Open APIs enable 3rd party application development.

‘Ganged’ GPUs on multi-PCIe slot motherboards, (re: NVIDIA SLI), not optimal for complex scientific applications:
- CPU/Coprocessor use-model depends upon execution of single algorithmic kernel for extended periods.
GPU Advantages...

- Hardware abstraction at API, standard software development flow and design representation.
- Multithread Programming Model
 - Avoid FPGA HDL-bottleneck, development-flow complexity.
- Parallel Acceleration
 - Single Instruction Multiple Thread (SIMT) processing model equivalent to powerful vector processor.
- Cache parallelization
 - Addresses fundamental thread-synchronization problem,
 - Enables hi-RADIX concurrent memory access
- Floating-Point Processing,
 - Avoids complexity and specificity of fixed-point implementations,
 - Obviates associated dynamic-range and loss-of-precision issues,
 - Double-Precision available.
- Pre-existing Body of Algorithmic I/P,
GPU Hardware Architecture I

- Single Instruction Multiple Data/Thread (SIMD/SIMT)
 - Cyclostatic multi-Processor

- Parallel Cache
 - Shared Memory + Constant + Texture Cache

- Parallel (‘O(10^2)’) Thread Processors
 - Hierarchical memory architecture organized
 CPU ↔ Device Memory ↔ Shared Memory
 - Separate Register Bank for each TP
 - Texture-Memory optimizes on spatial-temporal coherence
Example GPU logical resource organization
Desktop SuperComputer (DSC) Processing Model I

- **Why do we need it?**
 - With consideration of complex applications, a fundamental performance issue emerges in connection with instruction-pipeline *cyclostatic residency*,
 - CPU/GPU-Coprocessor model is intended for single algorithmic kernel executing over long interval,
 - **Scatter-Gather** on GPU Array enables; (1) efficient SIMD/SIMT acceleration over diverse algorithmic kernels, and (2) full concurrency over all GPU instances.

- **4x fundamental ePX DSC principles..**
 - Supercomputing-styled scatter-gather,
 - CPU/GPU process pipelining (scheduler),
 - Apply hierarchical *coarse-grained-to-fine-grained* parallelism based upon synergy of distributed, SMP, and SIMD/SIMT processing models,
 - Reuse GPU instruction-pipelines part and parcel of algorithmic-kernel scheduling.
DSC Processing Model II

- **GPU Applications Programming Interface (API)**
 - Virtualizes GPU hardware in form of standard C/C++ function calls,
 - No requirement for specialized parallelizing compiler/OS runtime support

- API implements streaming communications model
 - MTP instruction pipeline initialization
 - GPU WRITE/READ transaction buffer

- **'Non-Blocking’** (asynchronous) GPU memcopies at CPU
 - Enables CPU/GPU process pipelining,
 - Enables GPA scatter-gather and GPU process pipelining,
 - Enables GPA load-balancing, and (GPU) instruction pipeline reuse

- **PC-based Supercomputing**
 - Leverage existing Symmetric Multi-Processing (SMP) capability available on modern multicore CPUs,
 - Fully compatible with standard PC applications environment.
 - MSVS/GCC + Windows/Linux
Desktop SuperComputer Processing Model III

Concurrent CPU/GPU Execution, (i.e. ‘process-pipelining’).
DSC Processing Model IV.
(Theory)

Assume a form of Amdahl’s Law specialized for CPU/GPU pipelining:

\[
A = \frac{1}{(1 - C_{CPU}P_{CPU} - P_{GPU}) + \frac{P_{GPU}}{N}}
\]

\(C_{CPU}\) = pipeline efficiency constant \(\in [0, 1]\), \(P_{CPU}\) = pipelined CPU code fraction, \(P_{GPU}\) = GPU accelerated code fraction.

Of particular interest is the limiting case:

\[
\lim_{N \to \infty} \left(\frac{1}{(1 - C_{CPU}P_{CPU} - P_{GPU}) + \frac{P_{GPU}}{N}} \right) = \frac{1}{1 - C_{CPU}P_{CPU} - P_{GPU}}
\]

However, with \(C_{CPU}P_{CPU}\) sufficiently large, \(\frac{P_{GPU}}{N} \gg (1 - C_{CPU}P_{CPU} - P_{GPU})\). Amdahl’s Law then becomes:

\[
A \approx \frac{1}{\frac{P_{GPU}}{N}} = \frac{N}{P_{GPU}} \equiv N; \quad A_{CPU-GPU} \equiv N_{GPU} \cdot N_{TP/GPU} = N_{GPAn}
\]

\[
A_{MCPU-GPA} = \frac{1}{(1 - C_{MCPU}P_{MCPU} - P_{GPA}) + \frac{P_{GPA}}{N_{GPA}}} \quad ; C_{MCPU} > C_{CPU} \Rightarrow A_{MCPU-GPU} > A_{CPU-GPU}
\]
Dynamic-Dataflow Design Representation.

Example ‘dataflow-object’
Cluster Architecture.

Hierarchical switch networks also supported for scalable internode communications.
Overarching *distributed-recursive* cluster processing model (‘divide-and-conquer’).

Dynamic-Dataflow design representation is incrementally elaborated at originating node and propagated throughout cluster in form of *dataflow-objects*.

Any node parses a received dataflow-object into *component-tasks*; locally processed component-tasks are further parsed into *algorithmic kernels* and applied to multi-core CPU/GPA process queues.

Remaining component tasks are distributed onto unused remote cluster resources.

Datapath may be optionally virtualized based upon data-server transactions at the originating node.
Cluster/multicore-CPU/GPA
Composite Process Schedule..
GPA-based Benchmark Projections

Nominal Experimental Platform: ~2.3GHz dual-core (Intel) processor featuring 2GB RAM, WinXP OS, and a GPA consisting of 4x NVIDIA GeForce 8800GTX graphics cards, (i.e. 128 thread processors per GPU).

<table>
<thead>
<tr>
<th>Algorithmic Kernel</th>
<th>Acceleration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computational Chemistry: 2nd order Moeller-Plesset</td>
<td>x17</td>
</tr>
<tr>
<td>Life Sciences: Smith-Waterman</td>
<td>x120</td>
</tr>
<tr>
<td>Finite Difference: Heat Equation, SOR (Gauss-Seidel solver)</td>
<td>x68</td>
</tr>
<tr>
<td>FEM multi-grid: Mixed Precision Linear Solvers</td>
<td>x108</td>
</tr>
<tr>
<td>Image Processing: Optical Flow</td>
<td>x220</td>
</tr>
<tr>
<td>Image Processing: Cubic B-spline interpolation on 3D textures</td>
<td>x1308</td>
</tr>
<tr>
<td>CFD: 3D Euler solver</td>
<td>x116</td>
</tr>
<tr>
<td>CFD: Navier-Stokes (Lattice Boltzmann)</td>
<td>x400</td>
</tr>
<tr>
<td>Signal Processing: Sparse Signal Recovery from Random Projections (NP-hard combinatorial optimization)</td>
<td>x124</td>
</tr>
<tr>
<td>Computational Finance: Quantitative Risk Analysis and Algorithmic Trading</td>
<td>x200</td>
</tr>
<tr>
<td>Computational Finance: Monte Carlo Pricing</td>
<td>x320</td>
</tr>
<tr>
<td>EDA: static timing analysis</td>
<td>x1040</td>
</tr>
<tr>
<td>EDA: SPICE simulator</td>
<td>x32</td>
</tr>
</tbody>
</table>
Prototype Test Platforms…

- **Platform:**
 - ATX form-factor, abit KN9-SLI motherboard, AMD A64 x2 4400+ (2.3GHz) CPU, 2GB 800MHz DDR2, 2GHz HyperTransport system bus,
 - 2xPCIe x16 slots, 600W P/S,
 - WinXP Professional.

- **GPU:**
 - I - 2x eVGA GeForce 8800 GS (1xGPU), 96x stream processors, 384MB memory, 192b memory interface, 38.4Gb/s memory bandwidth,
 - II - 2x eVGA GeForce 9800 GX-2 (2xGPU), 256x stream processors, 1-GB memory, 512b memory interface, 128Gb/s memory bandwidth,
 - Operated in non-SLI mode, (1xGPU interleaved with display).

- **Software:**
 - MATLAB 7.3 (2006b),
 - MicroSoft Visual Studio C++ 2005 Express,
 - NVIDIA CUDA + SDK + Profiler.
Fourier pseudospectral simulation – 2D fluid dynamics (C. Bretherton, Univ. Washington)

- GPU-based application is virtualized in form of standard MATLAB function-call, based upon ‘MATLAB EXternal’ (MEX) API,
- MEX-wraper → CUDA (thread-scheduled ‘C’) → Compile + Link against MATLAB + CUDA libraries → DLL; access MicroSoft Visual C++ runtime libraries.
- Algorithm is ‘2D FFT-Intensive’, (i.e. uses optimized NVIDIA CUFFT libraries),
- Extensible to arbitrary coarse/fine-grained MATLAB model components.
Benchmark Test Results (I)...

20x CFD Speedup w/Single GPU + MATLAB harness!

2.3GHz WinXP + 8800-GS
Benchmark Test (II)...

- Black-Scholes Monte Carlo Simulation..
 - GPA-based application is virtualized inform of standard MATLAB function-call, based upon ‘MATLAB EXternal’ (MEX) API,
 - MEX-wrapper → CUDA (thread-scheduled ‘C’) → Compile + Link against MATLAB + CUDA libraries → DLL; access MicroSoft Visual C++ runtime libraries.
 - ePX *scatter-gather* distributes random variate processing to GPA elements based upon detection of ‘N_{GPU}’ GPUs.
 - Simulation results are ‘binned’ in post-processing step and passed back to MATLAB environment, (i.e. for plot generation, or subsequent simulation processing),
 - Conceptual basis for MATLAB as generic application delivery platform.
 - Extensible to ‘SciLab’, ‘RLab’, ‘SOFA’, and ‘Octave’ applications.
Benchmark Test Results (II)

Black-Scholes: 3×10^7 Options - 2.3GHz WinXP Dual 8800-GS - 821x Acceleration!
Summary..

- **enParallel (ePX) DSC is really a new class of supercomputer!**
 - Based upon CPU/GPA architectural template,
 - Synergizes with SMP (multicore) and distributed (cluster) processing models,
 - Builds upon traditional supercomputing technique:
 - CPU/GPA process pipelining, scatter-gather, hierarchical (coarse/fine-grained) parallelization.

- **Excellent GPA/Cluster scaling properties.**

- **The focus is acceleration of complex scientific applications incorporating diverse algorithmic kernels.**
 - Distinct from standard CPU/GPU-Coprocessor model,
 - Enables efficient parallel-processing over diverse algorithmic kernels.

- **Major advantages over competing acceleration technologies..**
 - FPGA-based accelerators,
 - Essentially an algorithmic 'point' solution, (re: complex and relatively unavailable partial reconfiguration technology, and implicit architectural specificity).
 - Problematic and complex development flow,
 - Nominally rudimentary memory model, (i.e. significantly limits processing model options).
 - multicore CPU (SMP),
 - GPU exhibits; (1) significantly higher parallelism, and (2) superior performance when applied to kernels for which the SIMD/SIMT processing model is optimal.